Changcheng Chen | Perovskite Solar Cells | Cryogenic Energy Solutions Award

Prof. Changcheng Chen | Perovskite Solar Cells | Cryogenic Energy Solutions Award

Xi’an University of Architecture and Technology | China

Prof. Changcheng Chen is a materials science researcher at Xi’an University of Architecture and Technology whose work spans energy storage materials, perovskite photovoltaics, photocatalysis, and machine-learning-assisted density functional theory (DFT) design of functional materials. He has authored 65 peer-reviewed publications indexed in Scopus, which have received 891 citations  and contributed to an h-index of 18, reflecting sustained scholarly influence. Prof. Chen collaborates extensively across disciplines and institutions, working with more than 140 co-authors on studies that advance high-performance battery anodes, inorganic halide perovskite stability, heterojunction nanomaterials for hydrogen evolution, and radiation-sensing materials for wearable monitoring. His research outputs support the development of sustainable energy technologies and next-generation electronic materials, with clear relevance to global challenges in clean energy, environmental stewardship, and advanced functional materials engineering.

Citation Metrics (Scopus)

891
700
500
300
0

Citations

891

Documents

65

h-index

18

Citations

Documents

h-index

View Scopus Profile

Top 5 Featured Publications

Fakhar Zaman | Energy | Research Excellence Award

Dr. Fakhar Zaman | Energy | Research Excellence Award

Beijing University of Chemical Technology | China

Dr. Fakhar Zaman is an Associate Researcher at Beijing University of Chemical Technology, Beijing, China, specializing in chemical engineering, functional materials, biosensing, and energy storage technologies. He has authored 21 peer-reviewed publications that have collectively received over 350 citations, reflecting the relevance and impact of his research. With an h-index of 11, his work spans interdisciplinary areas including fluorometric biosensors, DNA methylation detection, and nature-inspired materials for next-generation electrochemical energy storage. Dr. Zaman actively collaborates with an international network of more than 80 co-authors, contributing to advances with potential societal impact in healthcare diagnostics and sustainable energy systems.

Citation Metrics (Scopus)

354
270
180
90
0

Citations

354

Documents

21

h-index

11

Citations

Documents

h-index


View Scopus Profile

 

Top 5 Featured Publications

Taha Sheheryar | Solar Energy Harvesting | Best Academic Researcher Award

Mr. Taha  Sheheryar | Solar Energy Harvesting | Best Academic Researcher Award 

Harbin Engineering University| China

Mr. Taha Sheheryar is a researcher affiliated with Harbin Engineering University, China, recognized for his emerging contributions to engineering and applied sciences. With 13 publications and 64 citations across 31 scholarly documents, his research reflects a strong commitment to advancing scientific understanding in areas relevant to computational modeling, materials science, and engineering innovation. Dr. Sheheryar’s academic footprint showcases both depth and interdisciplinary engagement. His work often emphasizes precision-driven methodologies and analytical rigor, contributing to high-impact studies that bridge theoretical insights with real-world applications. Through active collaboration with 27 co-authors from diverse institutions, he has strengthened international research networks and fostered the exchange of advanced technical expertise. His contributions not only enhance the scientific literature but also support the development of technologies relevant to sustainable engineering and industrial efficiency. With a growing h-index of 5, Dr. Sheheryar continues to build a distinguished research profile characterized by innovation, scholarly integrity, and global relevance. His pursuit of excellence in engineering research underscores his role as a promising academic dedicated to addressing contemporary scientific challenges and contributing meaningfully to the global research community.

Profiles: Scopus | ORCID
Featured Publications

1. Sheheryar, T., Lv, B., Wang, X., Dong, X., Gao, L., & Xie, B. (2026, March). Ultra-wideband graphene-assisted terahertz sensor with tunable polarization conversion for chemical sensing. Materials Research Bulletin.

2. Lv, B., Sheheryar, T., Wekalao, J., & Gao, L. (2026, January). Ultra-wideband and angular-stable terahertz reflective cross-polarization converter integrated with highly sensitive biosensing. Materials Research Bulletin.

3. Sheheryar, T., Tian, Y., Lv, B., Chu, X., & Shi, J. (2025). A graphene-based tunable polarization insensitive terahertz metasurface absorber for multi-band high-efficiency applications. Journal of Materials Chemistry C.

4. Sheheryar, T., Waqar, F., Lv, B., & Gao, L. (2025). An ultra-wideband terahertz linear cross-polarization converter with integrated biosensing for multi-disease diagnosis. Journal of Materials Chemistry C.

5. Sheheryar, T., Tian, Y., Lv, B., & Gao, L. (2025). Highly sensitive polarization-independent metasurface terahertz biosensor for multi-disease diagnosis. Plasmonics.