Yuan Li | Hydrogen Production | Cryogenic Energy Solutions Award

Dr. Yuan Li | Hydrogen Production | Cryogenic Energy Solutions Award

Research Scientist | X-Here Trek Lab | United States

Dr. Yuan Li is a Research Scientist and Initiating Founder at X-Here (Future Ice-based Hydrogen Energy & Resilient Environments) Trek Lab, where he pioneers the integration of cryospheric science with sustainable energy innovation. His work bridges ice physics, cryogenic materials characterization, and hydrogen-based renewable energy systems, transforming the scientific understanding of ice microstructures into practical solutions for climate resilience and clean energy production. Formerly affiliated with Dartmouth College’s Ice Research Laboratory and Germany’s Alfred Wegener Institute, he has made notable contributions to ice microstructural dynamics, paleoclimatology, and advanced cryogenic systems. Dr. Li’s groundbreaking research on ice-mediated hydrogen production introduced a self-sustaining cycle utilizing solid-state proton extraction from ice, achieving over 53% net efficiency and offering a decentralized, eco-efficient hydrogen generation pathway for cold regions and remote environments. His findings have been published in leading international journals such as Sustainable Energy Technologies and Assessments, International Journal of Hydrogen Energy, Crystal Growth & Design, and Journal of Glaciology, earning global recognition for linking cryosphere science with renewable hydrogen technologies. With active collaborations across institutions in the United States, China, and Europe, Dr. Li has presented his work at prominent scientific forums in Berlin, Barcelona, Edinburgh, and Budapest, contributing to the advancement of climate-adaptive energy solutions. His professional focus lies in ice-based hydrogen energy, cryogenic materials, and polar system dynamics, with research outcomes that drive sustainability and resilience in global energy systems. With 12 publications, 103 citations, and an h-index of 6, Dr. Yuan Li continues to advance the frontier of cryogenic science and hydrogen innovation toward a sustainable and energy-secure future.

Profiles: ScopusORCID

Featured Publications

Li, H.-Y., & Li, Y. (2025, November). Ice to hydrogen: A self-sustaining cycle for decentralized green energy. Sustainable Energy Technologies and Assessments.

Li, Y., Fu, C., & Li, H.-Y. (2025, September 13). Lessons from nature’s freeze crystallization—Perennial sea ice as a model for efficient salt rejection in desalination. Crystal Growth & Design.

Li, Y. (2025, June 24). Comments on linear-viscous flow of temperate ice [Preprint]. ESSOAr.

Li, Y. (2025, January). Hydrogen production via imperfective ice Ih. International Journal of Hydrogen Energy.

Li, Y., & Fu, C. (2024, December). Hydrogen storage—Learning from nature: The air clathrate hydrate in polar ice sheets. Sustainable Energy Technologies and Assessments.

Dr. Yuan Li’s pioneering research bridges cryospheric science and sustainable energy innovation, transforming the physics of ice into practical solutions for hydrogen production and storage. His work advances global efforts toward clean, decentralized, and resilient energy systems, offering transformative potential for climate adaptation, renewable energy development, and sustainable industry practices.

Ramtin Moeini | Energy Production | Best Researcher Award

Dr. Ramtin Moeini | Energy Production | Best Researcher Award

Associate Professor | University of Isfahan | Iran

Dr. Ramtin Moeini is an Associate Professor in the Department of Civil Engineering at the University of Isfahan, specializing in water engineering, hydraulic systems, and optimization of water and wastewater networks. He earned his B.Sc. in Civil Engineering from Isfahan University of Technology, followed by M.Sc. and Ph.D. degrees in Civil Engineering with a focus on Water Engineering from Iran University of Science and Technology, where his research concentrated on intelligent optimization algorithms for reservoir operation and network design. Dr. Moeini has extensive teaching experience across undergraduate, postgraduate, and Ph.D. programs in subjects including fluid mechanics, hydraulic structures, water resource system analysis, and municipal water management. His professional experience encompasses leading advanced research projects on reservoir operation, water distribution networks, and urban water management, often integrating meta-heuristic algorithms such as ant colony optimization, artificial bee colony, and hybrid computational models. He has authored numerous high-impact publications in internationally recognized journals, contributed to conference proceedings worldwide, and actively participates in research collaborations addressing water resources and hydraulic system optimization. Dr. Moeini has received multiple recognitions for his contributions, holds editorial and reviewer roles in leading journals, and is a member of professional engineering associations. His innovative work in modeling, simulation, and optimization has significantly advanced the design and management of water systems, According to Scopus, his research record includes 848 citations, 48 documents, and an h-index of 16.

Profiles: Scopus | ORCID

Featured Publications

1. (2025). Pressure management and energy production approaches in urban water distribution networks using pumps as turbines. Energy Reports.

2. (2025). Optimal operation of the non-drinking water distribution network considering future conditions: Case study of Isfahan University non-drinking water distribution network. Results in Engineering.

3. (2025). Graph theory-based algorithm to define district metered areas considering hydraulic conditions. Journal of Water Resources Planning and Management.

4. (2025). Quality simulation of dam reservoir using GP model: Case study of ZayandehRoud dam reservoir. International Journal of Environmental Science and Technology