Farzad Habibi | Materials Science | Best Researcher Award

Dr. Farzad Habibi | Materials Science | Best Researcher Award

Researcher, Sahand University of Technology, Iran

Dr. Farzad Habibi is a materials scientist and engineer with an extensive background in joining metallurgy, surface engineering, and materials characterization. He currently serves as CEO of Fara Sakht Karan Azerbaijan Co., while maintaining key research and teaching roles at Sahand University of Technology. With over a decade of academic, industrial, and research experience, Dr. Habibi has contributed significantly to the development of innovative joining technologies and high-performance coatings. His expertise spans thermodynamic simulations, microstructural analysis, and advanced welding methods, positioning him as a leading figure in both academic and industrial materials engineering communities.

Professional Profile

ORCID | Google Scholar

Education

Dr. Habibi earned his Ph.D. in Materials Science and Engineering from Sahand University of Technology. His doctoral studies built upon a Master of Science in Welding Metallurgy and a Bachelor of Science degree in Materials Science and Engineering from Tabriz University. He began his academic journey with a High School Diploma in Mathematics and Physics, laying the foundation for his analytical and engineering skills.

Experience

Dr. Habibi has held diverse roles in academia and industry, reflecting his interdisciplinary proficiency he has been the CEO of Fara Sakht Karan Azerbaijan Co., where he oversees advanced materials solutions for industrial applications. He also serves on the Board of Directors of Sahand Nanolotus Co., and has been a lead researcher at Iran Mavad Co. His academic roles include laboratory assistant at Sahand University’s Advanced Manufacturing Research Center and past teaching assistant positions. He has also worked in quality control and R&D management in automotive and heat treatment industries.

Research Focus

Dr. Habibi’s research centers on joining metallurgy, including brazing, soldering, and diffusion bonding techniques for dissimilar materials. He is also active in the development of electro-spark deposition (ESD) coatings and investigates the physical metallurgy of phase transformations and thermodynamics. His work extends into archaeometry and the analysis of ancient metallic artifacts. Current projects include the development of HEA coatings, interlayer engineering for tungsten carbide/steel joints, and electro-spark deposition of titanium- and zirconium-based coatings.

Awards and Honors

Dr. Habibi has received several professional recognitions for his contributions to materials science and engineering. He was honored by the Nano Headquarters for securing research funding and was named Best Reviewer by the Journal of Advanced Joining Processes (Elsevier). He also holds a patent related to the use of electro-spark deposition (ESD) for dissimilar material joining. Additionally, Dr. Habibi has led multiple industrial projects focused on wear-resistant coatings for major manufacturing companies.

Publication Top Notes

Title: Feasibility of Electrical Discharge Machining (EDM) of AZ31 Lightweight Magnesium Alloy in Dielectric Fluids of Hydrocarbon Oil and Deionized Water
Authors: Saeed Asghari, Mohammad Reza Shabgard, Maghsoud Shalvandi, S. Abolfazl Roudehchi, Farzad Habibi
Journal: International Journal of Lightweight Materials and Manufacture
Summary: This research evaluates EDM machining of AZ31 magnesium alloy using hydrocarbon oil and deionized water as dielectric fluids. The study investigates machining efficiency, surface quality, and tool wear to assess the feasibility of EDM for lightweight magnesium alloys.

Title: Microstructural Evaluation and Mechanical Properties of WC-6%Co/AISI 1045 Steel Joints Brazed by Copper, Brass, and Ag-based Filler Metals: Selection of the Filler Material
Authors: Farzad Habibi, Amir Mostafapour, Karim Heydarpour
Journal: Journal of Advanced Joining Processes
Summary: The article compares copper, brass, and silver-based filler metals in brazing WC-6%Co to AISI 1045 steel. It focuses on microstructural changes and mechanical properties to determine the optimal filler for joint strength and durability.

Title: In-situ Formation of Ultra-hard Titanium-based Composite Coatings on Carbon Steel through Electro-Spark Deposition in Different Gas Media
Authors: Farzad Habibi, Ahad Samadi
Journal: Surface and Coatings Technology
Summary: Explores the influence of various gas atmospheres on electro-spark deposition of titanium-based composite coatings on carbon steel. The study examines coating hardness, phase composition, and microstructural characteristics.

Title: Microstructural Evolution During Low-temperature Brazing of WC-Co Cemented Carbide to AISI 4140 Steel Using a Silver-based Filler Alloy
Authors: Farzad Habibi, Ahad Samadi, Mohammad Nouri
Journal: International Journal of Refractory Metals and Hard Materials
Summary: Investigates the microstructural development and bonding mechanisms in low-temperature brazing of WC-Co cemented carbide to AISI 4140 steel with silver-based filler alloys, aiming to improve joint quality.

Title: Interfacial Reactions in Actively Brazed Cu-Al₂O₃ Composites and Copper Using a Newly Developed Cu-Sn-Ag-Ti Filler Alloy
Authors: Farzad Habibi, Ahad Samadi
Journal: Science and Technology of Welding and Joining
Summary: This study presents a novel Cu-Sn-Ag-Ti active filler alloy for brazing copper to Cu-Al₂O₃ composites. It examines interfacial reactions, phase formation, and joint integrity to enhance metal-ceramic joining techniques.

Conclusion

Dr. Farzad Habibi is a dedicated scientist whose multifaceted work in materials science bridges academic theory and industrial application. His innovations in joining technologies and surface engineering, combined with a strong publication record and commitment to education, make him a highly deserving nominee for distinction in materials science and engineering. Through continued research, leadership, and mentorship, Dr. Habibi contributes meaningfully to the advancement of advanced manufacturing and materials characterization in both national and international contexts.

 

Aleksandar Bojić | Material Science | Best Researcher Award

Prof. Aleksandar Bojić | Material Science | Best Researcher Award

Full Professor | University of Niš, Faculty of Sciences | Serbia

Aleksandar Bojić is a distinguished Serbian academic and researcher currently serving as a Full Professor at the Faculty of Sciences and Mathematics, University of Niš. With an extensive background in applied, industrial, and environmental chemistry, Bojić has made significant contributions to the fields of water treatment, environmental chemistry, and materials science. Over the years, he has directed several key research projects focusing on innovative approaches to wastewater purification, chemical and electrochemical processes, and environmental protection. His work has earned him recognition within both national and international scientific communities.

Profile

Education

Bojić’s educational journey began at the University of Niš, where he earned his Bachelor’s degree in Chemistry in 1991, focusing on the influence of physicochemical properties of glasses on the mechanical characteristics of ceramic joints. He continued his academic pursuit by obtaining a Master’s degree in 1997, exploring electrocatalysis in aqueous solutions with a solid metal catalyst. In 2002, Bojić completed his PhD, which centered on the electrochemical effects of microalloyed aluminum-based composites on microorganisms in aqueous environments.

Experience

Throughout his career, Bojić has held various academic and research positions at the University of Niš, advancing through the ranks from Research Assistant to Full Professor. His professional experience extends beyond teaching, as he has led numerous research initiatives and contributed significantly to the scientific community’s understanding of water treatment and environmental chemistry. He has served as Head of the Laboratory for Applied, Industrial, and Environmental Chemistry since 2011, a role that allows him to directly impact the development of new technologies for water purification and waste management.

Research Interest

Bojić’s research interests are wide-ranging but focus primarily on applied chemistry and environmental engineering. He is particularly interested in advanced oxidation processes (e.g., UV/Ox, photocatalysis, and Fenton processes) for water treatment, as well as the use of biosorbents and activated carbons in wastewater purification. Additionally, his work explores electrochemical processes for water treatment, such as electro-oxidation and electro-coagulation-flotation. He has also made notable contributions to the study of corrosion, materials science, and the development of sustainable solutions for environmental protection. His work in these fields aims to address global challenges, including water contamination and the sustainable use of natural resources.

Award

Based on the extensive qualifications, research background, and contributions, Aleksandar Bojić seems highly suitable for the “Best Researcher Award.

Publications Top Note

Bojić, A.L., et al. “Enhanced thermal stability and excellent electrochemical and photocatalytic performance of needle-like form of zinc-phthalocyanine.” Ceramics International, 2024.

Filipović, K., et al. “Highly efficient nano sorbent as a superior material for the purification of wastewater contaminated with anthraquinone dye RB19.” Journal of Water Process Engineering, 2024.

Petrović, M.M., et al. “Co-doped ZnO catalyst for non-thermal atmospheric pressure pulsating corona plasma degradation of reactive dye.” Materials Chemistry and Physics, 2024.

Velinov, N.D., et al. “The Application of Wood Biowaste Chemically Modified by Bi2O3 as a Sorbent Material for Wastewater Treatment.” Processes, 2024.

Tadić, T.T., et al. “Novel eco-friendly sorbent derived from Acer pseudoplatanus seed for atenolol removal from pharmaceutical wastewater.” Journal of Water Process Engineering, 2024.

Petrović, M.M., et al. “Non-thermal atmospheric-pressure positive pulsating corona discharge in degradation of textile dye Reactive Blue 19 enhanced by Bi2O3 catalyst.” Plasma Science and Technology, 2024.

Conclusion

Aleksandar Bojić is a respected researcher and academic whose work in environmental chemistry, water treatment, and materials science has had a profound impact on both academic and practical approaches to environmental sustainability. His numerous publications, research projects, and awards speak to his commitment to advancing the understanding of chemical processes for environmental protection. Through his leadership in research and teaching, Bojić continues to contribute to the scientific community, guiding the next generation of researchers in tackling some of the world’s most pressing environmental challenges.