Clara Mata | Liquid Hydrogen | Best Researcher Award

Dr. Clara Mata | Liquid Hydrogen | Best Researcher Award

Senior Advanced Application Engineer, 3M Company, United States

Clara Mata is a distinguished Senior Specialist Application Engineer with over 25 years of experience in applied research and development, primarily at the forefront of energy-related technologies. Her multifaceted career spans critical sectors such as oil and gas, mining, and, more recently, the rapidly evolving field of liquid hydrogen energy. With a robust foundation in fluid dynamics, heat transfer, and solids mechanics, Clara has consistently driven innovation by combining experimental techniques with advanced modeling. Her work is marked by a strong customer-oriented approach and interdisciplinary collaboration, making her a pivotal figure in transforming engineering solutions into commercially viable technologies at 3M. She is also a prolific contributor to patents and peer-reviewed publications, showcasing her commitment to advancing science through practical application.

Professional Profile

🎓 Education

Clara Mata holds a Ph.D. in Fluid Mechanics from the University of Minnesota – Twin Cities (1994–1998), where she developed a strong foundation in transport phenomena and experimental fluid mechanics. She began her academic journey with a Bachelor’s degree in Mechanical Engineering from Universidad Simón Bolívar in Caracas, Venezuela (1984–1990). This rigorous education provided the technical depth and analytical rigor that continue to define her engineering work today.

🛠️ Professional Experience

Clara began her professional career as a Senior Research Scientist at PDVSA-Intevep in Venezuela, where she led experimental modeling of particle transport, gas-liquid flow in pipelines, and the rheological characterization of complex fluids like Orimulsion®. She collaborated with CNRS on micellar solutions and surfactant mixing processes. Transitioning to the U.S., she served as a Postdoctoral Associate at the University of Minnesota from 2006 to 2008, focusing on diffusion-based extraction in microfluidic systems and teaching mechanics courses. She then joined 3M as a Research Scientist (2008–2009), leading fluid flow experiments in oil and gas applications. Since 2010, Clara has served as a Senior Advanced Application Engineer at 3M, where she has made groundbreaking contributions to cryogenic storage technologies, lightweight cements, and energy sector innovations.

🔬 Research Interests

Clara’s research centers on fluid dynamics, thermal conductivity, multiphase flows, cryogenic insulation, and the mechanical behavior of engineered materials under extreme conditions. Her recent focus on the thermal behavior of insulation materials in liquid hydrogen storage has contributed to safer and more efficient energy solutions. Clara is particularly interested in translating fundamental physics into scalable, field-ready applications in energy and sustainability.

📚 Publications Top Notes

Title: Validating Effective Thermal Conductivity of Glass Microspheres in Cryogenic Storage Insulation via Finite Element Analysis
Author: Clara Mata
Published in: CEC/ICMC, 2025
Summary: Finite element analysis confirms glass microspheres’ thermal performance, aiding material selection for efficient cryogenic hydrogen tank insulation systems.

Title: Study of the Evacuation of Gas in Bulk-Fill Insulation Materials Used in Large-Scale LH₂ Storage Tanks
Author: Clara Mata
Published in: Journal Volume 97, pp. 1498–1506, 2025
Summary: Investigates gas evacuation behavior in cryogenic insulation, enhancing thermal performance in large-scale liquid hydrogen storage tanks.

Title: Survival of Hollow Glass Microspheres in Drilling Fluids Applications – Effect of the Drill Bit/Formation Contact
Author: Clara Mata
Published in: Journal of Petroleum Science & Engineering, Vol. 189, 106966, 2020
Summary: Assesses microsphere durability during drilling, optimizing materials to improve performance in aggressive subsurface environments.

Title: Carbon Nanotubes Reinforced Lightweight Cement Testing Under Triaxial Loading Conditions
Author: Clara Mata
Published in: Journal of Petroleum Science and Technology, Vol. 174, pp. 663–675, 2019
Summary: Explores how carbon nanotubes enhance lightweight cement strength, promoting safer operations in downhole high-stress environments.

Title: Drilling Fluid Density and Hydraulic Drag Reduction with Glass Bubble Additive
Author: Clara Mata
Published in: Journal of Energy Resources Technology, ASME, Vol. 139(4), 042904, 2017
Summary: Demonstrates how glass bubbles reduce fluid density and drag, improving energy efficiency in oil and gas drilling processes.

🏆 Conclusion

Clara Mata’s career exemplifies the highest standards of applied engineering research, translating scientific rigor into real-world solutions that advance energy technologies and industrial innovation. Her ability to span multiple disciplines, from cryogenics to drilling fluids, and her consistent output of impactful patents and publications underscore her unique contributions to science and industry. Through leadership, deep technical knowledge, and a commitment to collaboration, Clara has earned her place as a frontrunner for the Best Academic Researcher Award. Her work not only addresses present-day challenges but also lays a foundation for future advancements in sustainable and efficient energy systems.

Dewen Tang | Nuclear Energy | Best Researcher Award

Dr. Dewen Tang | Nuclear Energy | Best Researcher Award

Vice Dean | University of South China | China

Dr. Dewen Tang is an esteemed Professor and Ph.D. supervisor, currently serving as the Vice Dean of the School of Mechanical Engineering at the University of South China. He holds a Ph.D. in Mechanical Engineering from Guangdong University of Technology, earned in 2009. Over the course of his career, Dr. Tang has made substantial contributions to the fields of nuclear safety and mechanical engineering, particularly focusing on the reliability and safety of key equipment in the nuclear industry. As the Director of the Hunan Province Key Laboratory of “Emergency Safety Technology and Equipment for Nuclear Facilities,” he has led numerous groundbreaking research projects. His academic excellence is coupled with a prolific body of work, including over 40 patents and more than 100 published papers in renowned journals. Dr. Tang’s leadership extends to various high-level advisory roles, including directorial positions in several industry and professional organizations.

Profile

Scopus

Education

Dr. Tang’s academic journey is marked by his achievement of a Ph.D. in Mechanical Engineering from Guangdong University of Technology in 2009. This educational foundation has empowered him to become a distinguished figure in the field of mechanical engineering, with a particular emphasis on nuclear safety technologies. Throughout his career, he has continued to build on this academic base through extensive research, mentorship, and participation in numerous national and provincial-level projects. His strong educational background has been integral to his success, allowing him to bridge the gap between academic theory and industrial practice in critical technological domains.

Experience

With extensive experience in both academia and industry, Dr. Tang has played a pivotal role in advancing safety technologies related to the nuclear industry. His work has significantly impacted the reliability of key nuclear facilities, particularly in emergency safety technologies and the monitoring of equipment related to nuclear reactors. As Vice Dean of the School of Mechanical Engineering, he manages a variety of research programs while nurturing the next generation of engineers and researchers. Additionally, he has led over 30 research projects, many of which focus on advanced manufacturing techniques, nuclear decommissioning, and the mitigation of radioactive hazards. Through his work with several prestigious organizations, including the China Nuclear Energy Industry Association, Dr. Tang has further solidified his influence in the mechanical engineering and nuclear safety fields.

Research Interests

Dr. Tang’s research interests cover a broad spectrum within mechanical engineering and nuclear safety. These include advanced manufacturing technology for difficult-to-machine materials, key technologies for emergency robots in nuclear facility decommissioning, and material surface modification under extreme conditions. He is also deeply invested in the simulation of nuclide migration and diffusion in radioactive environments, as well as the development of radiation-resistant robotics for enhanced nuclear facility safety. His research has contributed to innovations that improve the safety protocols in nuclear reactors, helping mitigate the spread of radioactive aerosols during accidents. These areas of focus not only represent his expertise but also reflect his dedication to advancing technologies that protect human health and the environment in nuclear contexts.

Awards

Dr. Tang has received numerous accolades in recognition of his scientific contributions, including innovation awards at the ministerial level. He has also been honored for his work in the development of nuclear safety technologies, which have been pivotal in enhancing both the reliability and safety of nuclear power systems. Throughout his career, Dr. Tang has earned recognition for his role in leading high-impact projects and for his groundbreaking research in the areas of radioactive aerosol deposition and safety technologies for nuclear facilities. His work has been fundamental in advancing the nuclear industry’s safety standards and technological capabilities.

Publications

Dr. Tang has authored or co-authored more than 100 research papers published in SCI and EI-indexed journals, contributing significantly to the academic community in the fields of mechanical engineering and nuclear safety. A selection of his key publications includes:

Tang, D., Liu, J., & Huang, C. (2020). Advanced techniques in emergency safety for nuclear facilities. Journal of Nuclear Engineering and Radiation Science, 6(3), 34-45. (Cited by 50 articles)

Tang, D., & Liu, J. (2019). Material surface modification for radiation resistance. Journal of Materials Science and Engineering, 12(2), 78-89. (Cited by 40 articles)

Tang, D. (2018). Modeling aerosol deposition in nuclear reactors under severe accident conditions. Nuclear Safety and Radiation Protection, 10(4), 215-227. (Cited by 60 articles)

These publications reflect his dedication to advancing both the theoretical understanding and practical applications of nuclear safety and mechanical engineering.

Conclusion

Dr. Dewen Tang is a leading figure in the field of mechanical engineering and nuclear safety. His extensive contributions to research, development, and technology in nuclear facility safety have had a lasting impact on the industry. With over 30 research projects, numerous patents, and a remarkable list of published works, Dr. Tang has continually demonstrated his dedication to advancing the state of nuclear safety and mechanical engineering. His leadership, research innovations, and academic achievements make him a distinguished candidate for the Best Researcher Award, reflecting his outstanding contributions to both his field and society at large. Dr. Tang’s research has the potential to shape the future of nuclear facility safety, ensuring that technological advances continue to protect lives and the environment.