Ankit Pal | Biogas Systems | Best Researcher Award

Ankit Pal | Biogas Systems | Best Researcher Award

Mr. Ankit Pal | Biogas Systems | Best Researcher Award

PhD Scholar, National Institute of Technology Tiruchirappalli, India

Mr. Ankit Pal is a dedicated academician and researcher currently pursuing his Ph.D. at the National Institute of Technology (NIT), Tiruchirappalli. With a strong foundation in renewable energy systems, especially solar PV and biogas hybrid technologies, he has made notable contributions to sustainable energy solutions. His passion lies in the intersection of research and teaching, aiming to create impactful energy strategies for rural and industrial applications.

Professional Profile

Google Scholar

Education

Mr. Pal embarked on his academic journey with a B.Tech. in Electrical Engineering from MAKAUT, West Bengal, where he explored optimal load dispatch models. He then earned his M.Tech. in Integrated Energy Systems from NIT Agartala (2020), working on an optimized PV-biogas hybrid system for decentralized rural applications. Currently, he is in the final stage of his Ph.D. at NIT Tiruchirappalli, where his thesis focuses on soiling estimation and its impact on large-scale solar PV plants, supported by an MHRD scholarship. His work combines advanced modeling with real-time data to optimize energy generation in harsh conditions.

Experience

Throughout his doctoral program, Mr. Pal served as a teaching assistant for several undergraduate and postgraduate subjects. At NIT Tiruchirappalli, he actively supported courses such as Design of Electrical Apparatus, Power System Protection and Switchgear, and multiple lab sessions including Electronic Circuit Lab and Integrated Circuit Lab. He also contributed to the Renewable Energy Lab during his time at NIT Agartala. His pedagogical contributions have enriched student learning with real-world energy system insights.

Research Focus

Mr. Pal’s research is centered on the performance optimization of solar PV systems under soiling conditions, the integration of PV with biogas technologies for rural electrification, and the role of AI in forecasting and maintenance. His innovative approaches to inverter loading ratio, cleaning interval analysis, and digester thermal modeling demonstrate his interdisciplinary expertise. His recent work delves into the estimation of biogas potential across varying climatic zones in India and energy forecasting in soiled environments.

Publication Top Notes

Effectuation of Biogas-Based Hybrid Energy System for Cost-Effective Decentralized Application in Small Rural Community
Authors: A. Pal, S. Bhattacharjee
Journal: Energy, Volume 203, Article 117819
Year: 2020 
Summary:
This seminal work focuses on the development of a biogas-based hybrid energy system tailored for rural electrification. Mr. Pal designed and simulated a cost-effective hybrid configuration, combining solar PV and biogas, to serve off-grid communities. The study evaluates system reliability, operational efficiency, and environmental impact. Its innovative framework offers an affordable and sustainable energy alternative for developing regions.

Design and Techno-Economic Analysis of an Off-Grid Integrated PV-Biogas System with a Constant Temperature Digester for a Cost-Effective Rural Application
Authors: A. Pal, G. S. Ilango
Journal: Energy, Volume 287, Article 129671
Year: 2024 
Summary:
In this article, Mr. Pal presents a novel integration of a constant-temperature anaerobic digester with a PV-biogas hybrid energy system. The system’s design aims to provide consistent power output and reliable biogas production in rural conditions. Detailed techno-economic analysis reveals substantial reductions in lifecycle cost and carbon emissions, making the solution both environmentally and economically viable.

Design and Experimental Validation of a Thermal Model for Anaerobic Digester for Consistent Biogas Production
Authors: A. Pal, G. S. Ilango
Journal: Energy, Article 137632
Year: 2025
Summary:
This research introduces a validated thermal model that ensures steady biogas generation regardless of ambient fluctuations. Mr. Pal conducted extensive experimentation to align theoretical predictions with real-world data, proving the model’s reliability. The findings serve as a foundation for scaling up biogas systems in varying climatic zones across India.

Performance Analysis of a Standalone PV System Under Dynamic Weather and Loading Conditions – A Case Study
Authors: A. Pal, S. Bhattacharjee
Conference: 2020 Fourth International Conference on Inventive Systems and Control (ICISC)
Summary:
This conference paper explores the challenges faced by standalone PV systems operating under unpredictable weather and load demand. Mr. Pal’s study uses simulation tools to assess voltage stability and energy output variations. The results emphasize the need for intelligent energy management in standalone solar installations.

An Analysis of Economic Load Dispatch with Ramp-Rate Limit Constraints Using BSA
Authors: A. Pal, K. Dasgupta, S. Banerjee, C. K. Chanda
Conference: 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS)
Summary:
In this early research, Mr. Pal applied the Backtracking Search Algorithm (BSA) to solve the Economic Load Dispatch problem considering ramp-rate constraints of thermal units. The study demonstrated improved convergence and accuracy over traditional methods, laying the groundwork for advanced optimization in power system operations.

Conclusion

Mr. Ankit Pal exemplifies academic excellence and research innovation in renewable energy systems. His contributions to PV-soiling estimation, hybrid energy systems, and AI-driven maintenance strategies position him as a promising leader in sustainable power engineering. As he nears completion of his Ph.D., his work holds significant potential for both academic advancement and societal impact in the clean energy sector.

Ihtisham Ul Haq | Nuclear Energy | Best Researcher Award

Mr. Ihtisham Ul Haq | Nuclear Energy | Best Researcher Award

Junior Engineer, Pakistan Institute of Engineering and Applied Sciences, Pakistan

Ihtisham Ul Haq 👨‍🔧 is a Junior Engineer at PIEAS with a strong background in mechanical and nuclear engineering. 🎓 He completed his BSc at CECOS University and MS at PIEAS under a PAEC fellowship. His research focuses on nuclear thermal-hydraulics, CFD, and dynamic simulations 🔬💻. He developed a validated model for water level prediction in PWR steam generators using real-time data. Previously, he worked at Agritech Fertilizer Ltd. 🏭 His skills include ANSYS and MATLAB, with interests in FEA and plant system safety ⚙️📈. Ihtisham is committed to innovation and bridging research with industrial solutions. 🌍🚀

Professional Profile

ORCID

Google Scholar

🎓 Education 

Ihtisham earned his BSc in Mechanical Engineering from CECOS University Peshawar 🎓, where he gained foundational knowledge in thermodynamics, design, and fluid mechanics 📘. He later pursued an MS in Mechanical Engineering at PIEAS, completed under a PAEC fellowship 🏫. His postgraduate studies emphasized nuclear thermal-hydraulics, multiphase heat transfer, and computational simulations 🔬. He specialized in power plant safety systems and mastered tools like ANSYS Workbench and MATLAB 💻. His MS research involved real-time data modeling of PWR U-tube steam generators, enhancing his expertise in reactor systems and simulation-based engineering solutions ⚙️🔥.

🧪 Professional Experience 

Ihtisham began his career as Assistant Engineer at Agritech Fertilizer Ltd🏭, contributing to plant maintenance and system diagnostics. Currently, he serves as Junior Engineer at PIEAS under PAEC 👨‍🔬. His responsibilities include advanced simulation, mechanical analysis, and nuclear system modeling using CFD and FEA tools 🔧💡. He has led dynamic analysis projects and validated simulation-based safety models for steam generators. His work blends theoretical knowledge with real-world application in nuclear energy 🧠⚡. Ihtisham’s ability to solve complex problems through computational tools has made him a reliable contributor to research and industrial innovation. 💼🚀

🔬 Research Focus 

Ihtisham Ul Haq’s research focuses on nuclear thermal-hydraulics, CFD, and dynamic system modeling 🔥💧. He specializes in analyzing multiphase flow in PWR systems and mechanical vibrations in dynamic structures. Using ANSYS and MATLAB, he builds predictive models to ensure safety and reliability in power plants ⚙️📈. His major contributions include a validated computational model for water level prediction in steam generators and fire propagation simulation in buildings using FDS 🏢🔥. Ihtisham also explores structural response under impact loads and cold chain thermal systems. His interdisciplinary approach bridges nuclear energy, computational analysis, and plant diagnostics 🌍🔬💻.

📘 Publication Top Notes

Computational Model for Prediction of Water Level Inside Vertical U-Tube Steam Generators (UTSGs) of Typical PWR

Authors:
Ihtisham Ul Haq, Abdul Manan, Ajmal Shah

Summary:
This research presents a computational model developed to predict water levels inside vertical U-tube steam generators (UTSGs), which are critical components in pressurized water reactors (PWRs). The model considers thermodynamic parameters, fluid dynamics, and structural design features to simulate real-time behavior under operational conditions. Results enhance safety analysis and efficiency assessments of PWR systems, aiding in predictive maintenance and system optimization.

Design & Fabrication of Smart Cold Chain Box

Authors:
HK Ihtisham Ul Haq, Dr. Muftooh Ur Rehman Siddiqi, Dr. Riaz Muhammad

Summary:
This project focuses on the design and fabrication of a smart cold chain box intended for the transport of temperature-sensitive goods such as vaccines and perishable foods. The device integrates sensors, IoT connectivity, and power-efficient cooling mechanisms to maintain optimal temperature ranges. The innovation addresses cold chain logistics challenges in resource-constrained or rural areas of Pakistan.

Improved Drying Efficiency of an Indigenously Developed Solar Food Dehydrator with Advanced Features

Authors:
Ihtisham Ul Haq, Afnan Haider, Noman Habib, Dr. Muftooh Ur Rehman Siddiqi

Summary:
This paper describes the development and performance evaluation of a solar-powered food dehydrator equipped with enhanced features such as adjustable airflow, temperature monitoring, and insulation improvements. The study demonstrates that these advancements significantly improve drying efficiency and consistency for agricultural products, offering a sustainable solution for food preservation in off-grid regions.

🏆 Conclusion 

Ihtisham Ul Haq deserves the Best Researcher Award for his exceptional work in nuclear and mechanical systems engineering 🧑‍🔬🏅. His contributions, including the development of a real-time predictive model for steam generators, demonstrate technical depth and innovation. 🌐⚙️ As a PEC member and PAEC fellow, he combines academic insight with industrial relevance. He actively applies CFD and FEA tools to enhance safety and performance in nuclear power systems 💻🔬. Ihtisham exemplifies research excellence, interdisciplinary knowledge, and a strong commitment to solving real-world energy challenges 🚀🌍. His impactful publication and innovation-driven mindset mark him as a future industry leader. 💡