Senior Researcher | Institute of Combustion Problems | Kazakhstan
Nursaya Makayeva is a dynamic educator and analytical chemist from Al-Farabi Kazakh National University, specializing in research and development, quality control, and advanced analytical methods. With several years of experience in academic and research settings, she has contributed significantly to the fields of catalysis, methane decomposition, and sustainable energy solutions. Her expertise bridges both teaching and applied research, making her a valuable contributor to the scientific community.
Professional Profile
ORCID
Education
Nursaya Makayeva pursued her higher education at Al-Farabi Kazakh National University, where she completed her bachelor’s and master’s degrees in chemistry. She continued her academic journey by enrolling in a doctoral program, deepening her expertise in catalysis and advanced chemical processes. Alongside her formal academic qualifications, she gained practical research experience through internships at the Center of Physico-Chemical Methods of Research and Analysis of Al-Farabi KazNU and at the Republican Center for Structural Research in Tbilisi, Georgia. These opportunities enriched her academic foundation by combining theoretical learning with hands-on laboratory practice.
Experience
Her professional career combines teaching, research, and practical application. As an educator, she designed engaging curricula and provided academic support that fostered student growth. In research, she served as a junior researcher at institutions such as the Institute of Combustion Problems and the Center of Physico-Chemical Methods of Research and Analysis, focusing on experimental design, catalytic systems, and advanced laboratory analysis. Skilled in techniques like chromatography, voltammetry, and TPR-H2, she applied these methods to produce reliable scientific outcomes. Her collaborations with senior researchers, contributions to R&D projects, and participation in international conferences further highlight her growing role in the global scientific community.
Research Focus
Nursaya’s primary research interests lie in catalysis, hydrogen production, and carbon utilization, with a particular emphasis on methane decomposition processes. Her studies explore the development and optimization of catalysts, including mono- and bimetallic systems, for efficient energy conversion. She has also investigated the effects of preparation methods and the incorporation of rare earth oxides, such as cerium, on catalyst performance. Her recent contributions extend to sustainable solutions in carbon dioxide utilization, where she has co-authored review studies on catalytic, photocatalytic, and electrocatalytic processes for CO₂ conversion. By addressing the intersection of renewable energy, environmental protection, and advanced materials, her research supports global efforts toward cleaner energy systems and reduced greenhouse gas emissions.
Publication Top Notes
Title: Advancements in catalytic, photocatalytic, and electrocatalytic CO₂ conversion processes: Current trends and future outlook
Year: 2024
Title: Effects of cerium oxide on the activity of Fe-Ni/Al₂O₃ catalyst in the decomposition of methane
Year: 2024
Title: Electrochemical synthesis of Fe-containing composite for decomposition of methane into COx-free hydrogen and nano-carbon
Year: 2022
Title: Effect of Preparation Method on the Activity of Fe₂O₃-NiO/γ-Al₂O₃ Catalyst in Decomposition of Methane
Year: 2022
Conclusion
Nursaya Makayeva exemplifies the qualities of an emerging leader in chemistry, combining strong academic foundations with impactful research and practical applications. Her dedication to advancing catalytic science, her ability to merge teaching with high-quality research, and her collaborative approach to scientific problem-solving highlight her as a deserving candidate for recognition. Through her contributions to methane decomposition, hydrogen production, and carbon dioxide utilization, she has positioned herself at the forefront of sustainable energy research. Her growing body of publications, active participation in international collaborations, and innovative patent demonstrate her potential to continue shaping the field of chemistry with lasting impact.