Ziqu Ouyang | Coal-Fired Power | Best Researcher Award

Prof. Ziqu Ouyang | Coal-Fired Power | Best Researcher Award

Professor, Institute of Engineering Thermophysics, Chinese Academy of Sciences, China

Professor Ouyang Ziqu is a distinguished Doctor of Engineering and a leading researcher at the Institute of Engineering Thermophysics, Chinese Academy of Sciences (CAS). He is widely recognized for his pioneering work in clean and efficient coal combustion, new combustion theories, and emission control technologies. As an excellent member of the Youth Promotion Association of CAS, Professor Ouyang plays a key role in driving scientific innovation and sustainable energy solutions in China and globally.

Professional Profile

Scopus Profile

Education

Professor Ouyang began his academic journey at the prestigious University of Chinese Academy of Sciences, where he pursued advanced studies in engineering thermophysics. From 2009 to 2014, he undertook rigorous doctoral research, which laid a strong foundation for his future contributions to combustion science and environmental engineering. His education at one of China’s foremost institutions prepared him to become a thought leader in the energy research landscape.

Experience

Following the completion of his doctorate in 2014, Professor Ouyang embarked on a decade-long career at the Institute of Engineering Thermophysics, CAS. He advanced rapidly through academic ranks—beginning as an assistant professor, then associate professor, and eventually achieving full professorship. Throughout this progression, he has consistently demonstrated leadership in research projects, mentoring young scholars, and collaborating across interdisciplinary teams to address critical energy and environmental challenges.

Research Focus

Professor Ouyang has dedicated his career to advancing technologies that enhance energy efficiency while minimizing environmental impact. His primary research focuses on clean coal combustion technology, novel combustion mechanisms, and integrated pollutant emission control. His work has provided significant breakthroughs in understanding and improving the thermodynamics of coal-based energy systems. These contributions are vital for energy sustainability and climate change mitigation, particularly in regions where coal remains a dominant energy source.

Awards & Honors

Professor Ouyang’s groundbreaking work has earned him multiple prestigious accolades. He received the Outstanding Scientific and Technological Achievement Award from the Chinese Academy of Sciences, recognizing his high-impact innovations in combustion technology. Additionally, he was awarded the First Prize of Science and Technology from the Coal Industry Association for his contributions to energy efficiency and emission control. These honors reflect his prominent status in the field and his dedication to research that drives real-world applications.

Publication Top Notes

Experimental Study on Peak Shaving Operations for Efficient Pulverized Coal Combustion and Working Fluid Coordination
Journal: Fuel
Year: 2026
Summary: This study investigates the effects of peak shaving operations on pulverized coal combustion efficiency and working fluid coordination. The experimental results demonstrate how adjusting load and thermal input can stabilize combustion performance under fluctuating grid demands. This research supports dynamic power system integration while maintaining high combustion efficiency.

Corrigendum to: ‘Wide-load Combustion Characteristics of Lean Coal Tangential Preheating Combustion’ [Energy 323 (2025) 135845]
Journal: Energy
Year: 2025
Summary: This corrigendum addresses corrections to a previously published study on wide-load combustion in tangential preheating systems for lean coal. The clarification further emphasizes the system’s performance across variable load conditions and enhances the data accuracy for future modeling and industrial application.

Exploration on Feasibility of Novel Purification-Combustion Technology in Activation, High-Efficiency Combustion and NOx Emission Reduction of Typical Low-Quality Carbonaceous Fuels
Journal: Journal of the Energy Institute
Year: 2025
Summary: This article evaluates a novel purification-combustion technology designed to enhance combustion efficiency and significantly reduce NOx emissions from low-quality fuels. Through activation treatment and staged combustion, the study showcases improved burnout rates and emission performance, providing a pathway for sustainable use of inferior coals.

Experimental Study on Two-Stage Modification, Combustion and NOx Emission Characteristics of Pulverized Coal in a Purification-Combustion Reaction System
Journal: Journal of Thermal Science
Year: 2025
Summary: This research explores a two-stage modification system applied to pulverized coal before combustion. Results reveal improved reactivity and reduced NOx emissions under optimized conditions. The paper provides a detailed reaction mechanism analysis and supports industrial application in retrofitting conventional coal-fired units.

Study on Combustion and NOx Emission Characteristics of Low-Quality Coal with Wide Load Based on Fuel Modification
Journal: Energies (Open Access)
Year: 2025
Summary: Focused on the wide-load combustion behavior of low-quality coal, this open-access study employs fuel modification techniques to maintain combustion stability and minimize NOx formation. It offers a comprehensive examination of the impacts of load variability on thermal performance and environmental output, contributing to flexible power generation strategies.

Wide-load Combustion Characteristics of Lean Coal Tangential Preheating Combustion
Journal: Energy
Year: 2025
Summary: This foundational study introduces a tangential preheating combustion system for lean coal, allowing efficient and stable operation across a broad load range. The research details flame structure, heat transfer patterns, and emission dynamics, making it a valuable reference for scalable clean-coal technology development.

Conclusion

Professor Ouyang Ziqu exemplifies the ideals of scientific innovation, academic excellence, and national service. His work in clean combustion and environmental protection stands at the intersection of cutting-edge research and pressing societal needs. Through his deep commitment to cleaner energy technologies, he contributes to China’s and the world’s sustainable development goals. With a strong academic record, significant real-world impact, and national-level recognitions, Professor Ouyang is a worthy candidate for this prestigious award.

Yuanyuan Ma | Energy Storage | Best Researcher Award

Dr. Yuanyuan Ma | Energy Storage | Best Researcher Award

Associate Professor, Donghua University, China

Dr. Yuanyuan Ma is a distinguished Associate Professor and Master’s Supervisor at the College of Materials Science and Engineering, Donghua University, and is affiliated with the State Key Laboratory of Advanced Fiber Materials. A rising star in the field of materials science, Dr. Ma has made significant contributions to energy storage, electrocatalysis, and sustainable materials development. Since earning her Ph.D. in 2019, she has demonstrated exceptional leadership in research and innovation, with over 50 SCI-indexed publications, including 29 as first or corresponding author. 📈 Her work has earned her an h-index of 30, a testament to the global impact and recognition of her research.

🔹Professional Profile

ORCID

Google Scholar

🏆Strengths for the Award

  • High Research Productivity:
    Dr. Ma has published 50 SCI papers, with 29 as first or corresponding author in top-tier journals such as Angewandte Chemie International Edition, Advanced Energy Materials, Chemical Society Reviews, and Nano-Micro Letters. This demonstrates her consistent, high-level contribution to cutting-edge research.

  • Research Impact and Recognition:
    An h-index of 30 at her career stage is an impressive metric, reflecting a strong citation record and influence in the field of materials science and energy research.

  • Leadership in Research Projects:
    She has successfully led national and regional research projects, including funding from the National Natural Science Foundation of China and the Natural Science Foundation of Shanghai, indicating her ability to secure competitive grants and lead research teams.

  • Strong Academic Credentials and Progression:
    Earning a Ph.D. from Fudan University, followed by a rapid promotion from Lecturer to Associate Professor at Donghua University, underlines her strong academic background and recognition by her institution.

  • Focused and Relevant Research Area:
    Her research in electrocatalysis, energy storage, and hydrogen production is not only scientifically important but also aligned with global energy and sustainability goals, increasing its practical and societal relevance.

🎓 Education

Dr. Ma earned her Ph.D. in Chemistry from Fudan University in 2019, where she conducted cutting-edge research under the supervision of the esteemed. During her doctoral studies, she developed a strong foundation in electrochemical energy storage, organic-inorganic hybrid materials, and molecular-level material design. Her academic training equipped her with both deep theoretical knowledge and strong experimental skills in advanced materials science.

👩‍🔬 Experience

Immediately after completing her Ph.D., Dr. Ma joined Donghua University as a Lecturer in July 2019. In recognition of her remarkable academic output and research leadership, she was promoted to Associate Professor within a short span—an exceptional achievement in academia. At Donghua, she serves as a Master’s Supervisor, guiding graduate students in breakthrough material innovation. She also plays a key role in managing and executing several national and provincial research projects, including grants from the National Natural Science Foundation of China and the Natural Science Foundation of Shanghai. 🏅

🔬 Research Focus On Energy Storage

Dr. Ma’s research is centered on the design and development of advanced materials for sustainable energy solutions. Her work spans several critical areas of materials science. One key focus is the tailoring of inorganic nanomaterials to achieve high-performance electrocatalysis and energy storage, where she strategically engineers nanostructures to enhance catalytic activity and improve energy efficiency. Another major area involves the molecular-level design of organic electrode materials specifically for aqueous battery applications, aiming to develop safer, more environmentally friendly alternatives to conventional batteries. In addition, Dr. Ma is at the forefront of efforts to innovate water electrolysis systems for clean and efficient hydrogen production, contributing to the advancement of hydrogen as a viable alternative energy source.

📚 Publications Top Notes

Electrocatalytic Reduction of Nitrate – A Step Towards a Sustainable Nitrogen Cycle

Authors: H. Xu, Y. Ma, J. Chen, W. Zhang, J. Yang
Summary:
This highly cited review outlines recent advances in nitrate electroreduction technologies. It discusses catalyst materials, mechanisms, and system designs that enable conversion of nitrate into valuable products like ammonia. The work is a key resource for researchers tackling water pollution and aiming for a sustainable nitrogen cycle.

An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode

Authors: Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang, Y. Xia
Summary:
This pioneering paper presents a safe, flexible zinc-ion battery with an organic cathode, offering a green alternative to conventional batteries. The battery system demonstrates strong performance, stability, and environmental compatibility—ideal for wearable electronics and sustainable storage.

Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes

Authors: J. Huang, Z. Guo, Y. Ma, D. Bin, Y. Wang, Y. Xia
Summary:
This review covers technological and chemical advancements in rechargeable batteries with aqueous electrolytes, focusing on improving safety, cost, and performance. It serves as a guide for future battery development with an emphasis on green and scalable energy systems.

High-Energy Rechargeable Metallic Lithium Battery at −70°C Enabled by a Cosolvent Electrolyte

Authors: X. Dong, Y. Lin, P. Li, Y. Ma, J. Huang, D. Bin, Y. Wang, Y. Qi, Y. Xia
Summary:
This study introduces a lithium-metal battery that operates at extreme cold (−70°C) using a cosolvent electrolyte. The battery maintains high energy density and reliability under frigid conditions, making it a breakthrough for aerospace and military applications.

Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO₂ Reduction to C₂⁺

Authors: M. Li, Y. Ma, J. Chen, R. Lawrence, W. Luo, M. Sacchi, W. Jiang, J. Yang
Summary:
This paper develops a chlorine-modified porous copper catalyst that boosts the CO₂ reduction reaction to form C₂⁺ hydrocarbons like ethylene. It offers insights into catalyst design and stability, aiding progress toward carbon capture and utilization technologies.

🏁 Conclusion

Dr. Yuanyuan Ma exemplifies excellence in research, mentorship, and scientific innovation. Her impactful work in the design of sustainable materials and clean energy systems has received wide acclaim, positioning her as a leader in materials science. With a proven track record of high-impact publications, successful research grants, and student supervision, Dr. Ma is not only advancing science but also shaping the next generation of researchers. Her commitment to solving global energy challenges makes her an ideal candidate for any prestigious research or academic award. 🏆🌍