liang zou | Microgrid system | Best Academic Researcher Award

Mr. liang zou | Microgrid system | Best Academic Researcher Award

professor, Shandong University, China

Professor Zou Liang is a leading scholar in the field of electrical engineering, currently serving as the Director of the Institute of Electrical Theory and New Technology at the School of Electrical Engineering, Shandong University. He holds the titles of professor and doctoral supervisor and has made significant contributions to high voltage and insulation technology. He has been recognized through numerous national and provincial honors, including selection for China’s National Youth Talent Program, designation as a leading talent in innovation and entrepreneurship in Jiangsu Province, and acknowledgment as an outstanding young and middle-aged scholar at Shandong University. He holds key professional roles such as committee member of the China Electrotechnical Society’s Energy Storage Systems and Electromagnetic Compatibility Committees, expert contributor to the “Light of Electric Power” initiative, and serves as director of the Shandong Electrotechnical Society. As an IEEE member and frequent reviewer for prestigious journals, Professor Zou has established a distinguished academic presence nationally and internationally.

Professional Profile

ORCID

🎓 Education

Professor Zou Liang received a comprehensive education in electrical engineering, culminating in a doctoral degree that laid the foundation for his specialized focus in high voltage engineering and new insulation technologies. His academic training emphasized both theoretical and applied research, which he has continuously advanced throughout his career. As an educator, he teaches undergraduate courses such as Fundamentals of Electrical Engineering (High Voltage Section) and Power System Grounding Technology, and a graduate-level course on Online Monitoring and Fault Diagnosis of Electrical Equipment, demonstrating his strong integration of teaching and research.

💼 Experience

From March 2021 to March 2023, Professor Zou served as the Director of the Mobile Program for Electrical Science and Engineering under the National Natural Science Foundation of China. His leadership experience extends to national-level research programs, where he has successfully managed complex, multidisciplinary projects. With over a decade of involvement in electrical engineering innovation, he has coordinated major government and industry-funded projects, collaborated across institutions, and provided technical consulting for the development of cutting-edge power system technologies.

🔬 Research Interests

Professor Zou’s research centers on the high-frequency discharge and electromagnetic optimization of new energy equipment, as well as the regulation and modification of high-performance insulation materials. His work bridges theoretical modeling and practical applications, including micromagnetic simulations, plasma degradation methods, and molecular dynamics studies of advanced composite materials. A pioneer in the field, he is particularly noted for advancing knowledge in nanocrystalline soft magnetic materials and for developing interdisciplinary methodologies that combine physics, materials science, and power systems engineering.

📚 Publications Top Notes

Micromagnetic Simulation of Saturation Magnetization of Nanocrystalline Soft Magnetic Alloys under High-Frequency Excitation

Authors: K. Guo, L. Zou*, L. Dai, et al.
Published in: Symmetry, Volume 14, Issue 7, Article 1443, Year: 2022
DOI: [Available upon request]
Summary:
This paper presents a micromagnetic simulation approach to analyze the saturation magnetization behavior of nanocrystalline soft magnetic alloys when exposed to high-frequency excitation fields.

Molecular Dynamics Simulation of the Influence of Functionalized Doping on Thermodynamic Properties of Cross-Linked Epoxy/Carbon Nanotube Composites

Authors: M. Ding, L. Zou*, L. Zhang, T. Zhao, Q. Li
Published in: Transactions of China Electrotechnical Society, Volume 36, Issue 23, Pages 5046–5057, Year: 2021
Summary:
This research employs molecular dynamics (MD) simulations to evaluate the thermodynamic properties of epoxy/carbon nanotube (CNT) composites subjected to various functionalized doping techniques.

A Review on Factors That Affect Surface Charge Accumulation and Charge-Induced Surface Flashover

Authors: M. Yuan, L. Zou*, Z. Li, L. Pang, T. Zhao, L. Zhang, J. Zhou, P. Xiao, S. Akram, Z. Wang, S. He
Published in: Nanotechnology, Volume 32, Issue 26, Year: 2021
Summary:
This comprehensive review article explores the various physical, chemical, and environmental factors that influence surface charge accumulation and the onset of flashover in insulating materials. The authors categorize the influence of surface morphology, humidity, material defects, electric field distribution, and charge mobility.

Investigation of Non-Thermal Atmospheric Plasma for the Degradation of Avermectin Solution

Authors: Y. Lv, L. Zou*, H. Li, Z. Chen, X. Wang, Y. Sun, L. Fang, T. Zhao, Y. Zhang
Published in: Plasma Science and Technology, Volume 23, Issue 5, Year: 2021
Summary:
This study examines the degradation efficiency of non-thermal atmospheric plasma (NTAP) on avermectin, a commonly used pesticide, in aqueous solutions. The paper analyzes plasma-induced chemical reactions, energy transfer mechanisms, and byproduct formation.

Influence of the External and Internal Factors on Saturation Magnetization Process for Nanocrystalline Alloy

Authors: Liang Zou, Jiale Wu, Zhiyun Han, et al.
Published in: IEEE Transactions on Magnetics, Volume 54, Issue 10, Article 7205708, Year: 2018
Summary:
This paper investigates how both intrinsic factors (such as atomic structure and grain size) and extrinsic conditions (such as applied magnetic field and temperature) affect the saturation magnetization of nanocrystalline magnetic alloys.

🔚 Conclusion

Professor Zou Liang’s academic and research excellence, coupled with his visionary leadership in engineering innovation, marks him as a distinguished contributor to the field of electrical engineering. His work not only addresses critical scientific challenges in high voltage and insulation technology but also offers practical solutions that advance energy system reliability and environmental safety. Through rigorous scholarship, prolific publication, and dedicated service to professional societies, he continues to set a standard for excellence in science, technology, and education.

Clara Mata | Liquid Hydrogen | Best Researcher Award

Dr. Clara Mata | Liquid Hydrogen | Best Researcher Award

Senior Advanced Application Engineer, 3M Company, United States

Clara Mata is a distinguished Senior Specialist Application Engineer with over 25 years of experience in applied research and development, primarily at the forefront of energy-related technologies. Her multifaceted career spans critical sectors such as oil and gas, mining, and, more recently, the rapidly evolving field of liquid hydrogen energy. With a robust foundation in fluid dynamics, heat transfer, and solids mechanics, Clara has consistently driven innovation by combining experimental techniques with advanced modeling. Her work is marked by a strong customer-oriented approach and interdisciplinary collaboration, making her a pivotal figure in transforming engineering solutions into commercially viable technologies at 3M. She is also a prolific contributor to patents and peer-reviewed publications, showcasing her commitment to advancing science through practical application.

Professional Profile

🎓 Education

Clara Mata holds a Ph.D. in Fluid Mechanics from the University of Minnesota – Twin Cities (1994–1998), where she developed a strong foundation in transport phenomena and experimental fluid mechanics. She began her academic journey with a Bachelor’s degree in Mechanical Engineering from Universidad Simón Bolívar in Caracas, Venezuela (1984–1990). This rigorous education provided the technical depth and analytical rigor that continue to define her engineering work today.

🛠️ Professional Experience

Clara began her professional career as a Senior Research Scientist at PDVSA-Intevep in Venezuela, where she led experimental modeling of particle transport, gas-liquid flow in pipelines, and the rheological characterization of complex fluids like Orimulsion®. She collaborated with CNRS on micellar solutions and surfactant mixing processes. Transitioning to the U.S., she served as a Postdoctoral Associate at the University of Minnesota from 2006 to 2008, focusing on diffusion-based extraction in microfluidic systems and teaching mechanics courses. She then joined 3M as a Research Scientist (2008–2009), leading fluid flow experiments in oil and gas applications. Since 2010, Clara has served as a Senior Advanced Application Engineer at 3M, where she has made groundbreaking contributions to cryogenic storage technologies, lightweight cements, and energy sector innovations.

🔬 Research Interests

Clara’s research centers on fluid dynamics, thermal conductivity, multiphase flows, cryogenic insulation, and the mechanical behavior of engineered materials under extreme conditions. Her recent focus on the thermal behavior of insulation materials in liquid hydrogen storage has contributed to safer and more efficient energy solutions. Clara is particularly interested in translating fundamental physics into scalable, field-ready applications in energy and sustainability.

📚 Publications Top Notes

Title: Validating Effective Thermal Conductivity of Glass Microspheres in Cryogenic Storage Insulation via Finite Element Analysis
Author: Clara Mata
Published in: CEC/ICMC, 2025
Summary: Finite element analysis confirms glass microspheres’ thermal performance, aiding material selection for efficient cryogenic hydrogen tank insulation systems.

Title: Study of the Evacuation of Gas in Bulk-Fill Insulation Materials Used in Large-Scale LH₂ Storage Tanks
Author: Clara Mata
Published in: Journal Volume 97, pp. 1498–1506, 2025
Summary: Investigates gas evacuation behavior in cryogenic insulation, enhancing thermal performance in large-scale liquid hydrogen storage tanks.

Title: Survival of Hollow Glass Microspheres in Drilling Fluids Applications – Effect of the Drill Bit/Formation Contact
Author: Clara Mata
Published in: Journal of Petroleum Science & Engineering, Vol. 189, 106966, 2020
Summary: Assesses microsphere durability during drilling, optimizing materials to improve performance in aggressive subsurface environments.

Title: Carbon Nanotubes Reinforced Lightweight Cement Testing Under Triaxial Loading Conditions
Author: Clara Mata
Published in: Journal of Petroleum Science and Technology, Vol. 174, pp. 663–675, 2019
Summary: Explores how carbon nanotubes enhance lightweight cement strength, promoting safer operations in downhole high-stress environments.

Title: Drilling Fluid Density and Hydraulic Drag Reduction with Glass Bubble Additive
Author: Clara Mata
Published in: Journal of Energy Resources Technology, ASME, Vol. 139(4), 042904, 2017
Summary: Demonstrates how glass bubbles reduce fluid density and drag, improving energy efficiency in oil and gas drilling processes.

🏆 Conclusion

Clara Mata’s career exemplifies the highest standards of applied engineering research, translating scientific rigor into real-world solutions that advance energy technologies and industrial innovation. Her ability to span multiple disciplines, from cryogenics to drilling fluids, and her consistent output of impactful patents and publications underscore her unique contributions to science and industry. Through leadership, deep technical knowledge, and a commitment to collaboration, Clara has earned her place as a frontrunner for the Best Academic Researcher Award. Her work not only addresses present-day challenges but also lays a foundation for future advancements in sustainable and efficient energy systems.