Leszek Ruchomski | Nanomaterial | Breakthrough in High Vacuum Cryogenics Award

Mr. Leszek Ruchomski | Nanomaterial | Breakthrough in High Vacuum Cryogenics Award

Lublin University Of Technology | Poland

Mr. Leszek Ruchomski is a researcher affiliated with Politechnika Lubelska (Lublin University of Technology), Poland, with expertise in materials science, crystallography, and functional oxide materials, particularly multiferroic and magnetoelectric systems. His research focuses on structure–property relationships in complex oxides, including the effects of chemical doping on crystal structure and spin ordering, as exemplified by his work on La-doped BiFeO₃. According to Scopus, he has authored 9 peer-reviewed publications that have received 62 citations across 54 citing documents, reflecting steady international visibility, with an h-index of 6. He has collaborated with at least 17 co-authors, indicating active engagement in multidisciplinary and international research networks. His contributions support the development of advanced functional materials with potential impact on energy-efficient electronics, sensing technologies, and next-generation multifunctional devices.

Citation Metrics (Scopus)

62
55
35
20
9
0

Citations

62

Documents

9

h-index

6

Citations

Documents

h-index

Top 5 Featured Publications

Ting Geng | Low-Dimensional Materials | Best Researcher Award

Dr. Ting Geng | Low-Dimensional Materials | Best Researcher Award

Dr. Ting Geng, Beijing Institute of Graphic Communication, China

Ting Geng is a distinguished physicist and lecturer at the Beijing Institute of Graphic Communication, specializing in the structure and physical properties of low-dimensional materials under high pressure. His academic journey has been marked by rigorous training in condensed matter physics and a strong focus on advanced material synthesis, high-pressure physical chemistry, and optical property analysis. With over 30 publications in leading international journals, several patents, and a published monograph, he has emerged as a promising researcher making significant contributions to materials science. His ability to integrate fundamental physics with applied material innovation demonstrates his role as a leading scholar and educator.

Professional Profile

Scopus Profile | ORCID

Education

Ting Geng pursued his academic foundation in physics at North China University, where he developed a strong interest in condensed matter and material systems. His bachelor’s degree provided the groundwork for further specialized studies in condensed matter physics at Jilin University, a prestigious institution recognized for scientific excellence. He successfully completed both his master’s and doctoral degrees at Jilin University, focusing on condensed matter physics with an emphasis on the structural design and functional properties of materials under extreme conditions. This progression not only refined his experimental skills but also deepened his expertise in high-pressure physical chemistry, nano-material synthesis, and optical property evaluation, laying the foundation for his later academic and research achievements.

Experience

Currently serving as a lecturer at the Beijing Institute of Graphic Communication, Ting Geng combines academic instruction with cutting-edge research in material science. His teaching integrates theoretical knowledge with practical experimentation, offering students exposure to contemporary advancements in physics and material studies. Beyond the classroom, he has presided over and actively participated in 12 national, institutional, and collaborative scientific research projects. These include a general project of the National Natural Science Foundation, multiple industry–academia cooperative initiatives, and horizontal research projects. His involvement in these projects underscores his ability to manage complex, interdisciplinary research while fostering collaboration between academia and industry.

Research Focus

Ting Geng’s primary research focus lies in the structure and physical properties of low-dimensional materials under high-pressure conditions. His investigations explore the synthesis and preparation of nanomaterials, structural characterization under extreme environments, and the evaluation of optical and physical behaviors. This research is crucial for understanding material responses to extreme pressures and advancing applications in next-generation electronic, optical, and functional devices. By bridging experimental material synthesis with theoretical insights, his work contributes to the design of novel materials with enhanced properties, supporting innovation in applied physics and engineering.

Publication Top Notes

Title: Pressure Effect on All-Inorganic Lead-Free Halide Perovskite Materials: Structural and Optical Properties
Summary: This work examines how external pressure influences the structural and optical characteristics of all-inorganic lead-free halide perovskites. It highlights pressure-induced phase transitions, bandgap tuning, and changes in light absorption, demonstrating the potential of pressure engineering to enhance stability and performance in environmentally friendly optoelectronic devices.

Title: Electron Transport Layer Materials of Perovskite Solar Cells
Summary: This review discusses various electron transport layer (ETL) materials used in perovskite solar cells, analyzing their structural, electronic, and interfacial properties. It emphasizes strategies for improving charge transport, reducing recombination losses, and enhancing device stability, offering pathways toward higher efficiency in perovskite photovoltaic technologies.

Conclusion

Through his outstanding academic training, extensive research contributions, and dedication to teaching, Ting Geng has established himself as a highly impactful physicist and educator. His work in synthesizing and characterizing nanomaterials under high pressure has significantly advanced the field of condensed matter physics, while his prolific publication record in leading journals underscores the global relevance of his research. His patents and authored monograph further highlight his commitment to bridging theory and practice, ensuring that scientific advancements translate into real-world applications.