Jan Kruzelak | Polymer | Best Researcher Award

Assoc. Prof. Dr. Jan Kruzelak | Polymer | Best Researcher Award

Researcher, Slovak University of Technology, Slovakia

Assoc. Prof. Ján Kruželák, PhD, is an accomplished academic and researcher at the Slovak University of Technology in Bratislava, specializing in polymer science, particularly rubber and elastomer technology. Since 2017, he has held the position of Associate Professor at the Institute of Natural and Synthetic Polymers, Department of Plastics, Rubber and Fibres. With deep knowledge in vulcanization systems and filler-rubber interface chemistry, his research stands at the intersection of material performance and sustainability. He has authored or co-authored over 75 peer-reviewed articles, and his work has received over 970 citations on Scopus and about 850 on Web of Science, both with an h-index of 14. His expertise and commitment to innovation and education mark him as a significant contributor to his field.

Professional Profile

Scopus Profile

ORCID

🎓 Education

Prof. Kruželák has pursued his entire academic career at the Slovak University of Technology in Bratislava. He began with a Bachelor’s degree, then completed his Master’s in 2007. He obtained his PhD and further advanced his research experience through a postdoctoral fellowship. This comprehensive education equipped him with a strong foundation in polymer materials, especially in their chemical processing and application.

💼 Experience

Beginning his academic career as an Assistant Professor in 2012, Prof. Kruželák was promoted to Associate Professor in 2017. Over the years, he has led numerous projects focusing on rubber composites, vulcanization technologies, and biopolymer additives. He has also delivered lectures and supervised over 35 Bachelor’s and Master’s theses, in addition to mentoring PhD candidates. His active role in international conferences and collaborative networks reflects his leadership in research and teaching.

🔬 Research Interests

His research focuses on the formulation, cross-linking, and performance optimization of rubber materials. He studies sulfur and peroxide vulcanization mechanisms, including their interaction with co-agents and bio-based fillers such as kraft lignin and calcium lignosulfonate. Moreover, he explores sustainable solutions for rubber waste reuse and eco-friendly additives, bridging polymer technology and environmental science. His work provides innovative solutions to the rubber industry and academia alike.

📚 Publications Top Notes

Influence of Plasticizers on Cross-Linking Process, Morphology, and Properties of Lignosulfonate-Filled Rubber Compounds

Authors: Ján Kruželák, Michaela Džuganová, Andrea Kvasničáková, Ján Hronkovič, Ivan Hudeč
Journal: Polymers, 2025
This study investigates the role of plasticizers in modifying the cross-link density, dispersion, and morphological characteristics of rubber compounds filled with calcium lignosulfonate. It reveals that plasticizers significantly enhance compatibility between the rubber matrix and the filler, leading to improved elasticity and processing behavior.

Strategy for Reducing Rubber Wear Emissions: The Prospect of Using Calcium Lignosulfonate

Authors: Michaela Džuganová, Radek Stoček, Marek Pöschl, Ján Hronkovič, Jozef Preťo
Journal: Express Polymer Letters, 2024
This paper presents an eco-innovation by proposing calcium lignosulfonate as a sustainable filler to reduce particulate emissions from rubber wear. The study confirms that this biopolymer can decrease tire wear and enhance environmental safety without compromising mechanical strength.

Sulfur and Peroxide Curing of NBR-Based Rubber Compounds Filled with Kraft Lignin and Calcium Lignosulfonate

Authors: Ján Kruželák, Michaela Džuganová, Klaudia Hložeková, Henrich Krump, Ivan Hudeč
Journal: Journal of Applied Polymer Science, 2024
This comparative research analyzes sulfur and peroxide curing systems applied to nitrile rubber (NBR) composites with bio-based fillers. It identifies that peroxide systems offer better heat resistance and cross-linking control, while sulfur curing provides higher tensile strength under certain conditions.

The Impact of Surface Roughness on Conformal Cooling Channels for Injection Molding

Authors: Jan Hanzlik, Jiri Vaněk, Vladimír Pata, Ján Kruželák, Martin Bednarik
Journal: Materials, 2024
Though primarily mechanical, this interdisciplinary study examines how varying surface roughness levels affect cooling rates in injection molds. Prof. Kruželák contributed through his polymer insights, especially concerning mold-material interactions and thermal conductivity improvements.

The Electrical Conductivity, EMI Absorption Shielding Performance, Curing Process, and Mechanical Properties of Rubber Composites

Authors: Ján Kruželák, Andrea Kvasničáková, Michaela Džuganová, Ivan Hudeč, Henrich Krump
Journal: Polymers, 2024
This paper explores multifunctional rubber composites engineered for both mechanical durability and electromagnetic shielding. It demonstrates that proper filler selection and optimized curing enhance conductivity and shielding performance, positioning these materials for advanced applications in electronics and automotive sectors.

🔚 Conclusion

Assoc. Prof. Ján Kruželák, PhD, exemplifies scientific excellence through his deep expertise in polymer chemistry, dedication to sustainable material innovation, and academic mentorship. His significant research contributions, reflected in high-impact publications and international collaborations, underline his eligibility for recognition and awards. His work continues to influence the global polymer science community, contributing to both industrial advancements and ecological sustainability.

Yamina Mebdoua Lahmar | Materials sciences | Women Researcher Award

Dr. Yamina Mebdoua Lahmar | Materials sciences | Women Researcher Award

Research Director | Advanced Technology Development Center | Algeria

Yamina Mebdoua-Lahmar is a prominent researcher and academic in the field of materials science and surface treatment, with a focus on thermal spraying techniques. Currently serving as the Director of Research at the Centre de Développement des Technologies Avancées (CDTA) in Algeria, she has made significant contributions to the development of advanced coatings and surface treatments. Her academic journey spans several decades, during which she has attained advanced degrees and built a distinguished career. Her research interests and leadership have positioned her as an expert in the areas of materials characterization, surface engineering, and applied physics.

Profile

Education

Dr. Mebdoua-Lahmar holds a comprehensive academic background. She obtained her Doctorate in Ceramic Materials and Surface Treatment from the University of Limoges, France, in 2008. Before this, she earned a Magister in Physics, specializing in Astrophysics, from the University of Blida in 1998. Her advanced studies culminated in an Habilitation in Physics from the University of Blida in 2014. Additionally, Dr. Mebdoua-Lahmar completed a Diplôme d’Etudes Supérieures in Physics at the University of Algiers in 1992. She also holds a Baccalaureate in Mathematics from 1987.

Experience

Dr. Mebdoua-Lahmar has an extensive career at CDTA, spanning over two decades. She started as a Research Attaché in 1998 and progressed through the ranks, becoming a Research Director in 2016. Over the years, she has held leadership roles, such as the Director of the “Ionized Media and Laser” Research Division (2012-2015) and Head of the Thermal Spray Team (2013-2020). She currently leads the Thermal Spray Technology Platform at CDTA, overseeing several research projects. Her involvement in numerous projects includes developing coatings resistant to wear and erosion, thermal barrier coatings, and cold spray deposition techniques. Dr. Mebdoua-Lahmar also served as an elected member of the CDTA Scientific Council from 2019 to 2023 and as its President in 2022-2023.

Research Interests

Dr. Mebdoua-Lahmar’s primary research interests lie in surface engineering, specifically the use of thermal spray processes to create protective coatings. Her work covers various applications, from wear-resistant coatings for industrial use to thermal barrier coatings and modeling of deposition processes such as cold spray. Additionally, she has explored the use of advanced materials for corrosion protection and the integration of energetic devices on nonconductive substrates. Her research also extends to numerical studies and modeling of heat transfer during coating formation, as well as the mechanical and electrochemical properties of thermally sprayed materials.

Award

Dr. Yamina Mebdoua-Lahmar, it seems that she is indeed a highly qualified and suitable candidate for the Best Researcher Award. Below is a structured analysis:

Publication Top Note

Rabah Azzoug, Yamina Mebdoua, Fatah Hellal, “Microstructural, Mechanical and Electrochemical Characterization of a Flame Sprayed NiFeCrBSi/WC Cermet Coating,” 21-25, 2022.

R. Azzoug, Y. Mebdoua, F. Hellal, F. Marra, “Analysis of Microstructure, Mechanical Indentation and Corrosive Behavior of a Thermally Sprayed NiFeCrBSi-WC Composite Coating,” Journal of Alloys and Compounds, December 2021, DOI:10.1016/j.jallcom.2021.163505.

O. Sifi, M. Djeghlal, Y. Mebdoua, S. Djeraf, F Hadj-Larbi, “The effect of the solution and aging treatments on the microstructures and microhardness of nickel-based superalloy,” Applied Physics A, 2020, DOI:10.1007/s00339-020-03517-2.

Y. Mebdoua, Y. Fizi, N. Bouhelal, “Cold sprayed copper coating: numerical study of particle impact and coating characterization,” Eur. Phys. J. Appl. Phys., 2016, 74, 24608. DOI:10.1051/epjap/2015150316.

Y. Mebdoua, A. Vardelle, P. Fauchais, “Heat Diffusion in Solidifying Alumina Splat Deposited on Solid Substrate under Plasma sprayed Conditions: Application to Coating Formation,” Defect and Diffusion Forum, 2010.

Y. Mebdoua, A. Vardelle, P. Fauchais, “Numerical Study of Alumina Nucleation Deposited on Steel Substrate under Plasma Spray Conditions,” International Journal of Thermal Sciences, 2010.

S. Djerourou, H. Lahmar, N. Bouhellal, Y. Mebdoua, “Study of Twin Wire Arc Sprayed Zinc/Aluminum Coating on Low carbon Steel Substrate: Application to Corrosion Protection,” Advanced Materials Research, 2013, Vol 685.

Conclusion

Dr. Yamina Mebdoua-Lahmar’s career is marked by significant contributions to the field of materials science, particularly in the area of surface treatments and thermal spraying. Through her leadership at the CDTA, she has advanced numerous groundbreaking projects and contributed to the development of innovative materials with industrial applications. Her academic and professional achievements have established her as a leading expert in the field. Through continuous research, teaching, and active participation in scientific conferences, Dr. Mebdoua-Lahmar remains a pivotal figure in the ongoing evolution of surface treatment technologies and material sciences.