Ahmed A. Ahmed | Infrastructure materials | Editorial Board Member

Assoc. Prof. Dr. Ahmed A. Ahmed | Infrastructure materials | Editorial Board Member

Assistant Professor | Mustansiriyah University | Iraq

Dr. Ahmed A. Ahmed is a civil engineering researcher at Mustansiriyah University, Baghdad, Iraq, recognized for his contributions to sustainable construction materials and innovative concrete technologies. With a Scopus-indexed record of 12 publications, 77 citations, and an h-index of 5, his work demonstrates a consistent commitment to advancing environmentally responsible engineering solutions. His research focuses on the development and performance evaluation of alternative binders, fiber-reinforced composites, and agricultural waste-derived additives that enhance the mechanical, durability, and thermal properties of concrete systems. A notable recent contribution is his open-access article on concrete masonry unit mixtures incorporating citric acid-treated corn stover ash and alkalinized corn stover fibers, reflecting his emphasis on circular-economy practices and low-carbon construction methodologies. Dr. Ahmed collaborates with multidisciplinary teams across materials science, structural engineering, and environmental engineering, supporting the integration of sustainable design principles into contemporary infrastructure. His research outputs have been cited in diverse international studies, evidencing the practical relevance and applicability of his findings to global construction challenges. Beyond academic publications, he contributes to capacity building in engineering education and fosters collaborative opportunities within the regional research community. Through his combined efforts in experimental research, innovation in eco-friendly materials, and knowledge dissemination, Dr. Ahmed is strengthening the scientific foundation for more resilient, efficient, and sustainable building practices in Iraq and beyond.

Profiles: Scopus | ORCID

Featured Publications

1. Shakouri, M., & Ahmed, A. A. (2025). Performance Evaluation of Concrete Masonry Unit Mixtures Incorporating Citric Acid-Treated Corn Stover Ash and Alkalinized Corn Stover Fibers. Buildings, 15(17), 3213.

2. Ahmed, A. A., Shakouri, M., & Abraham, O. F. (2025). Assessing the Impact of Graphene Nanoplatelets Aggregates on the Performance Characteristics of Cement-Based Materials. Sustainability, 17(6), 2349. Cited by: 2

3. Shakouri, M., Ahmed, A. A., & Teymouri, M. (2024). Evaluating the performance of thermomechanically beneficiated fly ash blended mortar. Construction and Building Materials. Cited by: 5

Dr. Ahmed A. Ahmed advances sustainable construction materials through innovative use of agricultural waste, contributing to resilient infrastructure and reduced environmental impact. His work bridges scientific innovation with practical industry solutions, supporting global efforts toward greener, cost-effective civil engineering technologies.

Qi Shi | Photocatalysis | Best Researcher Award

Ms. Qi Shi | Photocatalysis | Best Researcher Award

Doctor, Jiamusi University, China

Dr. Qi Shi is a distinguished researcher and academic affiliated with Jiamusi University, holding a Ph.D. in Materials Science and Engineering. Specializing in nanophotocatalytic materials for environmental remediation, Dr. Shi has developed multiple visible-light-responsive semiconductor catalysts for efficient degradation of organic pollutants in water. With a strong foundation in synthesis, morphology control, and surface modification, Dr. Shi has published eight SCI-indexed papers and led a key research project funded by the Heilongjiang Provincial Department of Education. Dr. Shi is passionate about sustainable innovation, theoretical mechanisms of photocatalysis, and practical environmental applications. 🌱🔬

🔷Professional Profile

Scopus Profile

🏆Strengths for the Award

Dr. Qi Shi is a skilled materials scientist focused on nanophotocatalytic materials for environmental remediation. Her research emphasizes the synthesis, engineering, and optimization of semiconductor nanomaterials to improve visible-light-driven degradation of water pollutants, contributing significantly to sustainable environmental technologies.

She holds a Ph.D. in Materials Science and Engineering, with expertise in photocatalytic mechanisms, defect engineering, and nanocomposite development. At Jiamusi University, she continues to advance research on high-efficiency catalysts for organic pollutant removal.

Dr. Shi has authored eight SCI-indexed papers in esteemed journals such as Industrial & Engineering Chemistry Research, Nanomaterials, and ChemistrySelect, covering areas like carbon nitride composites, Eu-based catalysts, and dual-mode sensors. Her current work includes modeling dye-sensitized solar cells and developing innovative environmental nanotechnologies.

She has led a provincially funded research project and contributed to diverse themes such as nanoenzyme-based sensing and dye degradation. Her research bridges materials science and environmental engineering, with real-world applications and academic relevance.

🎓 Education

Dr. Qi Shi earned a Ph.D. in Materials Science and Engineering, focusing on semiconductor nanomaterials and their photocatalytic mechanisms. During doctoral training, Dr. Shi cultivated expertise in defect engineering, heterostructure design, and charge carrier dynamics, laying a strong theoretical and technical foundation for interdisciplinary research at the intersection of nanotechnology and environmental science. 🧪📘

💼 Experience

Currently serving as a faculty member at Jiamusi University, Dr. Shi is involved in both teaching and advanced research supervision. In this role, Dr. Shi has mentored graduate students, facilitated inter-departmental collaborations, and secured competitive funding. As the Principal Investigator of a provincial education department-funded project, Dr. Shi led efforts in developing innovative photocatalytic systems with real-world water treatment potential. 🧑‍🏫💡

🔍 Research Focus

This study focuses on developing a high-performance photocatalyst by combining tetracyanoethylene-modified graphite-phase carbon nitride (g-C₃N₄) with SnS₂ to form a heterojunction structure. The aim is to enhance visible-light-driven degradation of oxytetracycline, a persistent antibiotic pollutant. By improving charge separation and reducing electron–hole recombination, the composite achieves superior photocatalytic activity. The work offers an effective, low-cost strategy for antibiotic removal from wastewater, contributing to advancements in environmental nanotechnology.

📚 Publications Top Note

Synthesis of Tetracyanoethylene Co-Graphite Phase Carbon Nitride PTCN/SnS₂ and Degradation Analysis of Oxytetracycline

Author: Dr. Qi Shi, Ph.D., Jiamusi University

Summary: This study reports the synthesis of a novel photocatalyst, PTCN/SnS₂, created by modifying graphite-phase carbon nitride (g-C₃N₄) with tetracyanoethylene (TCNE) and coupling it with SnS₂. Designed to enhance the visible-light degradation of oxytetracycline (OTC) in water, the composite shows improved light absorption, charge separation, and photocatalytic efficiency. Characterization confirmed its enhanced performance over individual components, highlighting its promise for pharmaceutical wastewater treatment.

📘 Conclusion

With a strong portfolio of interdisciplinary research, international publications, and impactful innovation, Dr. Qi Shi exemplifies excellence in environmental nanotechnology. Dr. Shi’s pioneering work on photocatalytic materials not only contributes to scientific knowledge but also fosters practical solutions for global water pollution challenges. As a nominee for the Best Researcher Award, Dr. Shi stands as a role model in advancing sustainable science through technical rigor and visionary application. 🏅🌐

Zhongnan Wang | Mechanical Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhongnan Wang | Mechanical Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhongnan Wang, Beijing Jiaotong University, China

Dr. Zhongnan Wang is a distinguished academic and researcher specializing in biotribology, micro/nanotribology, and MEMS technology. Currently serving as an Associate Professor at the School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Dr. Wang has developed a reputation for cutting-edge work in advanced hydrogels and material characterization. With dual PhDs and extensive postdoctoral experience, his multidisciplinary approach combines engineering precision with biomedical applications. His research has significantly advanced understanding in friction, wear, and lubrication in biological systems, particularly the development of materials mimicking natural cartilage. Through editorial roles and peer-review contributions, he also plays a vital part in shaping the scientific discourse in his field.

Professional Profile

Scopus Profile
ORCID

🎓 Education

Dr. Wang has an impressive academic foundation, beginning with a Bachelor of Engineering degree from Northeast Agricultural University (2002–2006). He then pursued a Master’s degree at Harbin Institute of Technology (2007–2009), where he deepened his expertise in mechatronic systems. His academic rigor led to a dual-PhD path: one in Mechatronic Engineering from Harbin Institute of Technology (2009–2016), and another in Engineering from the University of Warwick, UK (2012–2017). This dual training in both Chinese and Western academic traditions has enabled him to bridge innovative theoretical knowledge with real-world applications in engineering science.

🧪 Experience

Professionally, Dr. Wang’s career began with a prestigious postdoctoral position at Tsinghua University (2017–2019) in the State Key Laboratory of Tribology in Advanced Equipment, where he focused on tribological behavior in biomedical applications. Since March 2020, he has been contributing as an Associate Professor at Beijing Jiaotong University. His responsibilities span research leadership, teaching, and supervising graduate-level students. Across these roles, Dr. Wang has led several high-impact research projects, collaborated with interdisciplinary teams, and contributed to advancing the university’s reputation in mechanical engineering and materials science.

🔬 Research Interests

Dr. Wang’s primary research areas include biotribology, with a special focus on hydrogel materials that simulate the mechanical and lubrication properties of biological tissues. He also investigates MEMS sensors and actuators, material characterization, and micro/nanotribology. His research stands out for its potential to revolutionize biomedical implants and soft robotics by mimicking the functionality of natural cartilage and other biological interfaces. By integrating nanomaterials like dopamine-modified hydroxyapatite into polymer networks, he has contributed to the development of materials that combine load-bearing capabilities with ultra-low friction.

🏆 Awards and Honors

Dr. Wang’s contributions have earned him several prestigious editorial appointments. He serves as an Associate Editor for the Open Access Journal of Data Science and Artificial Intelligence (since May 2025) and as a Guest Editor for Lubricants (since January 2025). He is also on the Editorial Board of the International Journal of Materials Science and Applications (2024–2027) and a Young Editorial Board Member for Materials Science and Technology (2023–2026). Furthermore, he has been a Topic Editor for Materials since 2021. He is an active reviewer for prominent journals including ACS Applied Materials & Interfaces, Langmuir, PLOS ONE, and Scientific Reports, further underlining his influence in the academic community.

📚Publications Top Notes

A Bilayer Composite Hydrogel with Simultaneous High Load Bearing and Superior Lubrication by Dopamine Modified Nano-Hydroxyapatite

Journal: Surfaces and Interfaces
Authors: Zhongnan Wang, Hui Guo, Ji Zhang, Yi Qian, Fanjie Meng, Yueshan Mu
Summary:
This paper presents a breakthrough in hydrogel-based biomaterials by introducing a bilayer composite hydrogel system that achieves both high load-bearing capacity and low-friction lubrication, which are critical for simulating natural cartilage function. The novelty lies in the integration of dopamine-modified nano-hydroxyapatite (nHA) into the hydrogel matrix.

Low-Friction Hybrid Hydrogel with Excellent Mechanical Properties for Simulating Articular Cartilage Movement

Journal: Langmuir
Authors: Zhongnan Wang, Fanjie Meng, Yue Zhang, Hui Guo
Summary:
This article introduces a hybrid hydrogel engineered for simulating articular cartilage movement, addressing the critical challenge of achieving a balance between mechanical robustness and low-friction behavior. The hydrogel is composed of a dual-network system combining a polyvinyl alcohol (PVA) matrix with a second polymeric or nano-reinforcement network, designed to mimic the viscoelastic and lubricative performance of biological cartilage.

✅ Conclusion

In conclusion, Dr. Zhongnan Wang is a forward-thinking scientist whose interdisciplinary expertise bridges mechanical engineering, material science, and biomedicine. Through advanced research in hydrogels and tribological systems, editorial leadership, and committed academic service, he is advancing the field of biotribology and inspiring the next generation of engineers and researchers. With a consistent record of impactful publications, strategic academic roles, and visionary research, Dr. Wang stands out as a strong candidate for recognition and award nomination in his field.