Rahim Zahedi | Energy and Environment | Best Researcher Award

Assist. Prof. Dr. Rahim Zahedi | Energy and Environment | Best Researcher Award

Assistant Professor, University of Tehran, Iran

Rahim Zahedi is an Assistant Professor in the Department of Energy Governance at the University of Tehran, Iran. He is a highly accomplished energy systems engineer and researcher, with notable contributions in the areas of renewable energy modeling, life cycle assessment (LCA), and thermal sciences. With over 120 peer-reviewed ISI publications and numerous national and international awards to his credit, Dr. Zahedi stands out as a global leader in sustainable energy research. He is frequently recognized for his academic excellence, including his inclusion in Stanford University’s global list of the top 2% of scientists.

Professional Profiles

ORCID | Google Scholar

Education

Dr. Zahedi’s academic journey reflects deep specialization in mechanical and energy systems engineering. He holds a PhD in Energy Systems Engineering from the University of Tehran, where his doctoral work focused on the “4E analysis of a sustainable hybrid system for providing optimized water, energy, food and environment nexus.” He previously earned his MSc in Energy Systems Engineering from Iran University of Science and Technology, conducting exergy-economic analysis and optimization studies on integrated renewable cycles. His academic foundation was laid with a BSc in Mechanical Engineering from the same institution. Currently, he is pursuing a postdoctoral fellowship focused on thermoeconomic analysis of solar-derived Organic Rankine Cycles integrated with thermal storage systems.

Experience

Since 2024, Dr. Zahedi has served as a full-time Assistant Professor at the University of Tehran. His teaching portfolio includes graduate-level courses such as Renewable Energy Potential Assessment, Carbon Capture Technologies, Energy Systems in Buildings, and Life Cycle Assessment of Energy Systems. From 2021 to 2023, he was a guest assistant professor at Islamic Azad University, where he taught various advanced subjects including Energy Management in Buildings and Wind Energy Technologies. His early academic career includes extensive teaching assistantship roles at Iran University of Science and Technology, contributing to both undergraduate and graduate-level engineering courses.

Research Focus

Dr. Zahedi’s research is rooted in interdisciplinary energy systems analysis, with a core emphasis on renewable energy integration, energy modeling, life cycle assessment (LCA), and sustainable infrastructure. His work has advanced theoretical and applied knowledge in hybrid energy systems, exergy analysis, energy policy, and optimization models for energy and environmental applications. He also specializes in building energy modeling (BEM), with substantial contributions to the thermodynamic and economic performance evaluation of solar-thermal and bioenergy systems. His projects frequently intersect environmental impact studies and economic feasibility assessments to develop scalable, sustainable energy solutions.

Awards and Honors

Dr. Zahedi’s work has been widely recognized by national and international organizations. He was awarded the 2023 JTACC-V4 Young Scientist Award for being the world’s top emerging scientist in thermal sciences and received the prestigious 2024 Alborz Prize, often referred to as the “Iranian Nobel Prize.” He has also won Iran’s National Renewable Energy Award and was named the country’s Best Young Researcher in Energy. His doctoral dissertation was selected as the Best Thesis in Energy Management, and he ranked first in multiple national competitions, including Iran’s PhD entrance exam in energy systems engineering and industrial innovation contests. Furthermore, Dr. Zahedi was recognized as the Most Cited Author in Energy Science and Engineering journal from 2021 to 2024 and was named among the top 2% scientists worldwide by Stanford University in 2023.

Publication Top Notes

Title: Technical, Economic, and Environmental Evaluation and Optimization of the Hybrid Solar-Wind Power Generation with Desalination
Journal: Case Studies in Thermal Engineering
Authors: Seyed Taher Kermani Alghorayshi, Milad Imandoust, Ali Montazeri, Rahim Zahedi

Summary:
The paper evaluates a hybrid renewable energy system combining solar and wind with desalination technology. It optimizes performance based on technical, economic, and environmental criteria, showing its viability for clean energy and water generation in remote or arid regions.

Title: A Comprehensive Review of the Performance and Principle of Fluidized Bed Heat Exchangers with Solar Energy as Thermal Source
Journal: Energy Reports
Authors: Rahim Zahedi, Abolfazl Ahmadi

Summary:
This review outlines the design principles, efficiency factors, and environmental benefits of fluidized bed heat exchangers using solar thermal energy, highlighting their potential in sustainable thermal systems.

Title: Environmental Sustainability Assessment of Urban Development Indicators
Journal: Journal of The Institution of Engineers (India): Series A
Authors: Sahar Hamed Shamaee, Hossein Yousefi, Rahim Zahedi

Summary:
This paper proposes a set of urban sustainability indicators to assess environmental impacts of development. It aids urban planners in designing greener and more sustainable cities.

Title: Practical and Numerical Analysis of Solar-Assisted Anaerobic Digestion System for Cold Regions
Journal: Case Studies in Chemical and Environmental Engineering
Authors: Younes Noorollahi, Leila Niazi, Rahim Zahedi

Summary:
This study analyzes the integration of solar thermal energy with anaerobic digestion for cold climates. It demonstrates improved biogas production and system efficiency under low-temperature conditions.

Title: A New Model for Allocating Subsidies to Power Distribution Companies for Loss Reduction
Journal: Expert Systems with Applications
Authors: Aidin Shaghaghi, Mohammad Taghi Tahooneh, Vahid Rezaei, Reza Dashti, Rahim Zahedi

Summary:
The article introduces a data-driven model to allocate financial subsidies to power distribution companies. It prioritizes loss reduction and performance improvement using artificial intelligence and decision-support systems.

Conclusion

Dr. Rahim Zahedi is a distinguished academic, researcher, and innovator whose work significantly contributes to the global pursuit of sustainable energy systems. With a prolific record of scholarly output, a multitude of prestigious awards, and a dynamic role in both academia and industry, he exemplifies excellence in engineering and energy governance. His multidisciplinary approach bridges theory and practice, offering impactful solutions for complex energy and environmental challenges. As a thought leader in energy systems modeling and sustainable infrastructure, Dr. Zahedi continues to influence the field and mentor the next generation of energy scientists.

Ankit Pal | Biogas Systems | Best Researcher Award

Ankit Pal | Biogas Systems | Best Researcher Award

Mr. Ankit Pal | Biogas Systems | Best Researcher Award

PhD Scholar, National Institute of Technology Tiruchirappalli, India

Mr. Ankit Pal is a dedicated academician and researcher currently pursuing his Ph.D. at the National Institute of Technology (NIT), Tiruchirappalli. With a strong foundation in renewable energy systems, especially solar PV and biogas hybrid technologies, he has made notable contributions to sustainable energy solutions. His passion lies in the intersection of research and teaching, aiming to create impactful energy strategies for rural and industrial applications.

Professional Profile

Google Scholar

Education

Mr. Pal embarked on his academic journey with a B.Tech. in Electrical Engineering from MAKAUT, West Bengal, where he explored optimal load dispatch models. He then earned his M.Tech. in Integrated Energy Systems from NIT Agartala (2020), working on an optimized PV-biogas hybrid system for decentralized rural applications. Currently, he is in the final stage of his Ph.D. at NIT Tiruchirappalli, where his thesis focuses on soiling estimation and its impact on large-scale solar PV plants, supported by an MHRD scholarship. His work combines advanced modeling with real-time data to optimize energy generation in harsh conditions.

Experience

Throughout his doctoral program, Mr. Pal served as a teaching assistant for several undergraduate and postgraduate subjects. At NIT Tiruchirappalli, he actively supported courses such as Design of Electrical Apparatus, Power System Protection and Switchgear, and multiple lab sessions including Electronic Circuit Lab and Integrated Circuit Lab. He also contributed to the Renewable Energy Lab during his time at NIT Agartala. His pedagogical contributions have enriched student learning with real-world energy system insights.

Research Focus

Mr. Pal’s research is centered on the performance optimization of solar PV systems under soiling conditions, the integration of PV with biogas technologies for rural electrification, and the role of AI in forecasting and maintenance. His innovative approaches to inverter loading ratio, cleaning interval analysis, and digester thermal modeling demonstrate his interdisciplinary expertise. His recent work delves into the estimation of biogas potential across varying climatic zones in India and energy forecasting in soiled environments.

Publication Top Notes

Effectuation of Biogas-Based Hybrid Energy System for Cost-Effective Decentralized Application in Small Rural Community
Authors: A. Pal, S. Bhattacharjee
Journal: Energy, Volume 203, Article 117819
Year: 2020 
Summary:
This seminal work focuses on the development of a biogas-based hybrid energy system tailored for rural electrification. Mr. Pal designed and simulated a cost-effective hybrid configuration, combining solar PV and biogas, to serve off-grid communities. The study evaluates system reliability, operational efficiency, and environmental impact. Its innovative framework offers an affordable and sustainable energy alternative for developing regions.

Design and Techno-Economic Analysis of an Off-Grid Integrated PV-Biogas System with a Constant Temperature Digester for a Cost-Effective Rural Application
Authors: A. Pal, G. S. Ilango
Journal: Energy, Volume 287, Article 129671
Year: 2024 
Summary:
In this article, Mr. Pal presents a novel integration of a constant-temperature anaerobic digester with a PV-biogas hybrid energy system. The system’s design aims to provide consistent power output and reliable biogas production in rural conditions. Detailed techno-economic analysis reveals substantial reductions in lifecycle cost and carbon emissions, making the solution both environmentally and economically viable.

Design and Experimental Validation of a Thermal Model for Anaerobic Digester for Consistent Biogas Production
Authors: A. Pal, G. S. Ilango
Journal: Energy, Article 137632
Year: 2025
Summary:
This research introduces a validated thermal model that ensures steady biogas generation regardless of ambient fluctuations. Mr. Pal conducted extensive experimentation to align theoretical predictions with real-world data, proving the model’s reliability. The findings serve as a foundation for scaling up biogas systems in varying climatic zones across India.

Performance Analysis of a Standalone PV System Under Dynamic Weather and Loading Conditions – A Case Study
Authors: A. Pal, S. Bhattacharjee
Conference: 2020 Fourth International Conference on Inventive Systems and Control (ICISC)
Summary:
This conference paper explores the challenges faced by standalone PV systems operating under unpredictable weather and load demand. Mr. Pal’s study uses simulation tools to assess voltage stability and energy output variations. The results emphasize the need for intelligent energy management in standalone solar installations.

An Analysis of Economic Load Dispatch with Ramp-Rate Limit Constraints Using BSA
Authors: A. Pal, K. Dasgupta, S. Banerjee, C. K. Chanda
Conference: 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS)
Summary:
In this early research, Mr. Pal applied the Backtracking Search Algorithm (BSA) to solve the Economic Load Dispatch problem considering ramp-rate constraints of thermal units. The study demonstrated improved convergence and accuracy over traditional methods, laying the groundwork for advanced optimization in power system operations.

Conclusion

Mr. Ankit Pal exemplifies academic excellence and research innovation in renewable energy systems. His contributions to PV-soiling estimation, hybrid energy systems, and AI-driven maintenance strategies position him as a promising leader in sustainable power engineering. As he nears completion of his Ph.D., his work holds significant potential for both academic advancement and societal impact in the clean energy sector.