Diana Berman | Tribology | Best Academic Researcher Award

Assoc. Prof. Dr. Diana Berman | Tribology | Best Academic Researcher Award

Associate Professor | University of North Texas | United States

Dr. Diana Berman, Associate Professor in the Department of Materials Science and Engineering at the University of North Texas and Director of the Tribology Center at the Advanced Materials and Manufacturing Processes Institute, is a leading expert in functional nanostructured materials and tribology. She earned her Ph.D. and M.S. degrees in Physics from North Carolina State University and her B.S. in Applied Physics and Mathematics from the Moscow Institute of Physics and Technology. Her professional trajectory spans key research roles at Argonne National Laboratory and leadership in academia, where she has directed transformative projects on multicomponent ceramics, carbon-based materials, and advanced coating technologies for friction and wear reduction. Dr. Berman’s research focuses on synthesis, structure–property relationships, and environment–material interactions, with a prolific record of publications, patents, and invited talks contributing significantly to the advancement of superlubricity and nanomaterials. Her work has earned her numerous prestigious awards, including the NSF CAREER Award, Fulbright Distinguished Scholar Award, and recognition among the Top 2% of scientists worldwide. She actively serves on editorial boards such as Nature Scientific Reports and Tribology Letters, and holds leadership positions in professional organizations including the American Vacuum Society and the Society of Tribologists and Lubrication Engineers. A dedicated mentor and innovator, she has supervised graduate and undergraduate researchers, contributed to major research funding initiatives, and advanced international collaborations. Professionally: 7,091 Citations, Documents 119, Documents 33 in Scopus.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

1. Berman, D., Erdemir, A., & Sumant, A. V. (2014). Graphene: A new emerging lubricant. Materials Today, 17(1), 31–42.

2. Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K. R. S., Erdemir, A., & Sumant, A. V. (2015). Macroscale superlubricity enabled by graphene nanoscroll formation. Science, 348(6239), 1118–1122.

3. Berman, D., Erdemir, A., & Sumant, A. V. (2013). Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon, 54, 454–459.

4. Berman, D., Erdemir, A., & Sumant, A. V. (2013). Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon, 59, 167–175.

5. Berman, D., Erdemir, A., & Sumant, A. V. (2018). Approaches for achieving superlubricity in two-dimensional materials. ACS Nano, 12(3), 2122–2137.

 

Nursaya Makayeva | Carbon Capture and Storage | Best Researcher Award

Dr. Nursaya Makayeva | Carbon Capture and Storage | Best Researcher Award

Senior Researcher | Institute of Combustion Problems | Kazakhstan

Nursaya Makayeva is a dynamic educator and analytical chemist from Al-Farabi Kazakh National University, specializing in research and development, quality control, and advanced analytical methods. With several years of experience in academic and research settings, she has contributed significantly to the fields of catalysis, methane decomposition, and sustainable energy solutions. Her expertise bridges both teaching and applied research, making her a valuable contributor to the scientific community.

Professional Profile

ORCID

Education

Nursaya Makayeva pursued her higher education at Al-Farabi Kazakh National University, where she completed her bachelor’s and master’s degrees in chemistry. She continued her academic journey by enrolling in a doctoral program, deepening her expertise in catalysis and advanced chemical processes. Alongside her formal academic qualifications, she gained practical research experience through internships at the Center of Physico-Chemical Methods of Research and Analysis of Al-Farabi KazNU and at the Republican Center for Structural Research in Tbilisi, Georgia. These opportunities enriched her academic foundation by combining theoretical learning with hands-on laboratory practice.

Experience

Her professional career combines teaching, research, and practical application. As an educator, she designed engaging curricula and provided academic support that fostered student growth. In research, she served as a junior researcher at institutions such as the Institute of Combustion Problems and the Center of Physico-Chemical Methods of Research and Analysis, focusing on experimental design, catalytic systems, and advanced laboratory analysis. Skilled in techniques like chromatography, voltammetry, and TPR-H2, she applied these methods to produce reliable scientific outcomes. Her collaborations with senior researchers, contributions to R&D projects, and participation in international conferences further highlight her growing role in the global scientific community.

Research Focus

Nursaya’s primary research interests lie in catalysis, hydrogen production, and carbon utilization, with a particular emphasis on methane decomposition processes. Her studies explore the development and optimization of catalysts, including mono- and bimetallic systems, for efficient energy conversion. She has also investigated the effects of preparation methods and the incorporation of rare earth oxides, such as cerium, on catalyst performance. Her recent contributions extend to sustainable solutions in carbon dioxide utilization, where she has co-authored review studies on catalytic, photocatalytic, and electrocatalytic processes for CO₂ conversion. By addressing the intersection of renewable energy, environmental protection, and advanced materials, her research supports global efforts toward cleaner energy systems and reduced greenhouse gas emissions.

Publication Top Notes

Title: Advancements in catalytic, photocatalytic, and electrocatalytic CO₂ conversion processes: Current trends and future outlook
Year: 2024

Title: Effects of cerium oxide on the activity of Fe-Ni/Al₂O₃ catalyst in the decomposition of methane
Year: 2024

Title: Electrochemical synthesis of Fe-containing composite for decomposition of methane into COx-free hydrogen and nano-carbon
Year: 2022

Title: Effect of Preparation Method on the Activity of Fe₂O₃-NiO/γ-Al₂O₃ Catalyst in Decomposition of Methane
Year: 2022

Conclusion

Nursaya Makayeva exemplifies the qualities of an emerging leader in chemistry, combining strong academic foundations with impactful research and practical applications. Her dedication to advancing catalytic science, her ability to merge teaching with high-quality research, and her collaborative approach to scientific problem-solving highlight her as a deserving candidate for recognition. Through her contributions to methane decomposition, hydrogen production, and carbon dioxide utilization, she has positioned herself at the forefront of sustainable energy research. Her growing body of publications, active participation in international collaborations, and innovative patent demonstrate her potential to continue shaping the field of chemistry with lasting impact.

Yao Lu | Thermoelectrics | Best Researcher Award

Prof. Yao Lu | Thermoelectrics | Best Researcher Award

Assistant Professor, Southern University of Science and Technology, China

Dr. Yao Lu is an accomplished scientist and Associate Professor at the School of Microelectronics, Southern University of Science and Technology (SUSTech), China. With a strong academic background and a research portfolio that spans advanced thermoelectric materials, GaN-based LED technology, and micro-thermoelectrics for on-chip thermal management, Dr. Lu has become a leading voice in the field of sustainable electronics and energy materials. His work blends academic rigor with technological innovation, resulting in impactful contributions to scientific knowledge, patented inventions, and real-world applications.

💠Professional Profile

ORCID

🏆 Strengths for the Award

Strong Academic and Research Background
Dr. Lu possesses a Ph.D. in Materials Science and Engineering from Tongji University and has steadily built his expertise through progressive academic and industry roles, including R&D, postdoctoral research, and tenure-track professorship.

Pioneering Research Contributions
His research in flexible thermoelectrics and micro-thermoelectric materials has led to multiple high-impact innovations. Notable is his 2023 publication in Nature Nanotechnology, one of the highest-ranking journals in the field, reflecting groundbreaking work on Bi₂Te₃ films. His work is widely cited, with individual papers garnering citations exceeding 165, signifying significant academic impact.

Independent Funding Success
Dr. Lu has secured multiple prestigious grants, including from:

China National Postdoctoral Program for Innovative Talents

National Natural Science Foundation of China (NSFC)

GuangDong Basic Research Foundation
These showcase his capability as a principal investigator and his recognition within national scientific funding systems.

Publication Quality and Volume
Dr. Lu has authored over 17 SCI-indexed publications, with many in top-tier journals like Nature Nanotechnology, Energy & Environmental Science, Materials Today Physics, and ACS Applied Materials & Interfaces. Several of these are ESI Highly Cited and “Hot Papers,” highlighting both relevance and timeliness.

🎓 Education

Dr. Lu began his academic journey with a Bachelor of Science degree in Optical Science and Technology from the University of Jinan in 2010. He continued at the same institution to obtain his Master of Science in Optics in 2012, where he deepened his understanding of photonic and optoelectronic systems. Eager to explore more advanced materials, he pursued a Ph.D. in Materials Science and Engineering at Tongji University, which he completed in December 2019. His doctoral research laid the foundation for his pioneering work in flexible thermoelectric materials, integrating the principles of optics, semiconductors, and nanotechnology.

💼 Experience

Dr. Lu’s professional journey began in industry, where he served as an R&D Engineer and later Supervisor at Inspur Group Co., Ltd. from 2012 to 2016. This early experience in a technology-driven industrial setting enriched his technical competencies and shaped his practical approach to research. Transitioning to academia, he joined Southern University of Science and Technology as a Postdoctoral Researcher in 2020. During this period, he contributed significantly to national research initiatives and rapidly distinguished himself as an emerging leader. In recognition of his potential, he was appointed Guest Professor at Songshan Lake Materials Laboratory in 2022. In 2024, Dr. Lu commenced his tenure-track position as Assistant Professor at SUSTech, where he continues to mentor students and lead cutting-edge research.

🔬 Research Focus

Dr. Lu’s research is centered on the development of advanced functional materials with a focus on flexible thermoelectrics, GaN-based light-emitting diodes, and micro-thermoelectrics for on-chip thermal management. His innovative work addresses the growing need for energy-efficient, miniaturized, and flexible electronics. By engineering high-performance thermoelectric films and composite structures, he is enabling new possibilities in wearable devices and next-generation electronics. His interdisciplinary research spans materials synthesis, device fabrication, and performance optimization, reflecting a deep understanding of both fundamental science and applied technology. His findings have laid the groundwork for more effective energy harvesting and thermal regulation systems, making his work critical to future advancements in microelectronics and sustainable technologies.

🏆 Awards and Honors

Throughout his career, Dr. Lu has been recognized for his outstanding contributions to science and innovation. In 2023, he was honored with the Dongguan Characteristic Talents Class II designation, recognizing his leadership in the field. He was named an Outstanding Postdoctoral Fellow by Southern University of Science and Technology in 2020. Earlier, he won the Excellent Report Award at the Chinese Materials Conference in 2019 and received First Prize in the 6th Shanghai College Students New Material Innovation and Creativity Competition the same year. His early promise was evident when he was named Outstanding Student of Shandong Province in 2012. These accolades are a testament to his sustained academic excellence, innovation, and dedication.

📚 Publications Top Notes

Modulating Carrier Transport by Cross-Dimensional Compositing of Ag₂Se/MXene for High-Performance Flexible Thermoelectrics

Journal: Journal of Materials Chemistry A (2024)
DOI: 10.1039/D4TA02249A
Contributors: Jie Qin, Yao Lu, Wenjing Liu, Zhangli Du, Xiang Li, Tianpeng Ding, Jianghe Feng, Yong Du, Qinfei Ke, Xin Wang

Summary:
This study presents a novel cross-dimensional compositing strategy integrating one-dimensional Ag₂Se nanowires with two-dimensional MXene nanosheets to form highly efficient flexible thermoelectric films. The synergistic interaction between the Ag₂Se and MXene phases significantly enhances electrical conductivity and optimizes carrier scattering, leading to improved thermoelectric performance. This work demonstrates a promising route for designing next-generation wearable energy devices with superior flexibility and thermal-to-electrical conversion capabilities. 💎

Probing Temperature‐Dependence of Hydrogen Bonding in Condensed Polymeric Materials with Aggregation‐Induced Emission

Journal: ChemistrySelect (Scheduled: August 12, 2024)
DOI: 10.1002/slct.202402045
Contributors: Yao Lu, Xinyue Fan, Shijie Ge

Summary:
In this innovative research, the team utilized aggregation-induced emission (AIE) fluorescence probes to investigate hydrogen bonding behavior in polymeric materials under varying temperatures. By linking AIE-active molecules to specific functional groups within polymers, the authors successfully visualized changes in hydrogen bonding dynamics with high sensitivity. This technique provides valuable insights into the fundamental interactions within soft materials and opens new avenues for designing smart responsive polymers in sensors and actuators. 🧪

Staggered-Layer-Boosted Flexible Bi₂Te₃ Films with High Thermoelectric Performance

Journal: Nature Nanotechnology (2023)
DOI: 10.1038/S41565-023-01457-5
Contributors: Yao Lu, Yi Zhou, Wu Wang, Mingyuan Hu, Xiege Huang, Dasha Mao, Shan Huang, Lin Xie, Peijian Lin, Binbin Jiang, Bo Zhu, Jianghe Feng, Jinxin Shi, Qing Lou, Yating Huang, Jianmin Yang, Junhua Li, Guodong Li, Jingqi He

Summary:
This groundbreaking work introduces staggered-layer engineering to enhance the thermoelectric performance of flexible Bi₂Te₃ films. By manipulating the nanoscale layering, the researchers achieved simultaneous improvement in electrical conductivity and reduced thermal conductivity, resulting in a record-breaking ZT value for flexible films. This achievement marks a significant leap toward the commercialization of high-efficiency, flexible thermoelectric materials for energy harvesting and wearable electronics. The publication in Nature Nanotechnology highlights its transformative impact on the field.

Exceptional Power Factor of Flexible Ag/Ag₂Se Thermoelectric Composite Films

Journal: Chemical Engineering Journal (2022)
DOI: 10.1016/J.CEJ.2022.134739
Contributors: Xiang Li, Yao Lu, Kefeng Cai, Mingyuan Gao, Yating Li, Zixing Wang, Miaomiao Wu, Ping Wei, Wenyu Zhao, Yong Du, Shuang Shen

Summary:
This article reports on the development of Ag/Ag₂Se flexible thermoelectric composite films that exhibit a remarkable power factor, surpassing previously reported values in similar materials. The incorporation of nanoscale silver provided conductive pathways while maintaining mechanical flexibility, making these composites ideal for wearable thermoelectric applications. The study offers vital insights into the optimization of metal–semiconductor interfaces and demonstrates practical application potential in low-power electronic devices. 💎

Exceptionally High Power Factor Ag₂Se/Se/Polypyrrole Composite Films for Flexible Thermoelectric Generators

Journal: Advanced Functional Materials (2022)
DOI: 10.1002/ADFM.202106902
Contributors: Yating Li, Qing Lou, Jianmin Yang, Kefeng Cai, Ying Liu, Yiming Lu, Yang Qiu, Yao Lu, Zixing Wang, Miaomiao Wu, Yong Du, etc.

Summary:
This high-impact research article presents a unique ternary composite system combining Ag₂Se, elemental Se, and polypyrrole to achieve an ultra-high power factor for flexible thermoelectric films. The hierarchical structure allows for optimized carrier mobility, phonon scattering, and mechanical integrity, significantly improving energy conversion efficiency. This work has implications for the development of lightweight, flexible thermoelectric generators suitable for wearable and autonomous electronic devices. Published in Advanced Functional Materials, the research reflects the cutting-edge innovation of Dr. Lu and collaborators.

🏁 Conclusion

Dr. Yao Lu stands at the forefront of innovation in energy materials and microelectronics. His distinguished academic training, multidisciplinary research, impactful publications, patented inventions, and active scientific engagement make him a highly deserving candidate for a prestigious research award. His work not only advances the scientific community but also contributes directly to the development of sustainable and intelligent technologies for the future. Through dedication, creativity, and leadership, Dr. Lu continues to inspire the next generation of researchers and drive progress in the global scientific landscape.

Clara Mata | Liquid Hydrogen | Best Researcher Award

Dr. Clara Mata | Liquid Hydrogen | Best Researcher Award

Senior Advanced Application Engineer, 3M Company, United States

Clara Mata is a distinguished Senior Specialist Application Engineer with over 25 years of experience in applied research and development, primarily at the forefront of energy-related technologies. Her multifaceted career spans critical sectors such as oil and gas, mining, and, more recently, the rapidly evolving field of liquid hydrogen energy. With a robust foundation in fluid dynamics, heat transfer, and solids mechanics, Clara has consistently driven innovation by combining experimental techniques with advanced modeling. Her work is marked by a strong customer-oriented approach and interdisciplinary collaboration, making her a pivotal figure in transforming engineering solutions into commercially viable technologies at 3M. She is also a prolific contributor to patents and peer-reviewed publications, showcasing her commitment to advancing science through practical application.

Professional Profile

🎓 Education

Clara Mata holds a Ph.D. in Fluid Mechanics from the University of Minnesota – Twin Cities (1994–1998), where she developed a strong foundation in transport phenomena and experimental fluid mechanics. She began her academic journey with a Bachelor’s degree in Mechanical Engineering from Universidad Simón Bolívar in Caracas, Venezuela (1984–1990). This rigorous education provided the technical depth and analytical rigor that continue to define her engineering work today.

🛠️ Professional Experience

Clara began her professional career as a Senior Research Scientist at PDVSA-Intevep in Venezuela, where she led experimental modeling of particle transport, gas-liquid flow in pipelines, and the rheological characterization of complex fluids like Orimulsion®. She collaborated with CNRS on micellar solutions and surfactant mixing processes. Transitioning to the U.S., she served as a Postdoctoral Associate at the University of Minnesota from 2006 to 2008, focusing on diffusion-based extraction in microfluidic systems and teaching mechanics courses. She then joined 3M as a Research Scientist (2008–2009), leading fluid flow experiments in oil and gas applications. Since 2010, Clara has served as a Senior Advanced Application Engineer at 3M, where she has made groundbreaking contributions to cryogenic storage technologies, lightweight cements, and energy sector innovations.

🔬 Research Interests

Clara’s research centers on fluid dynamics, thermal conductivity, multiphase flows, cryogenic insulation, and the mechanical behavior of engineered materials under extreme conditions. Her recent focus on the thermal behavior of insulation materials in liquid hydrogen storage has contributed to safer and more efficient energy solutions. Clara is particularly interested in translating fundamental physics into scalable, field-ready applications in energy and sustainability.

📚 Publications Top Notes

Title: Validating Effective Thermal Conductivity of Glass Microspheres in Cryogenic Storage Insulation via Finite Element Analysis
Author: Clara Mata
Published in: CEC/ICMC, 2025
Summary: Finite element analysis confirms glass microspheres’ thermal performance, aiding material selection for efficient cryogenic hydrogen tank insulation systems.

Title: Study of the Evacuation of Gas in Bulk-Fill Insulation Materials Used in Large-Scale LH₂ Storage Tanks
Author: Clara Mata
Published in: Journal Volume 97, pp. 1498–1506, 2025
Summary: Investigates gas evacuation behavior in cryogenic insulation, enhancing thermal performance in large-scale liquid hydrogen storage tanks.

Title: Survival of Hollow Glass Microspheres in Drilling Fluids Applications – Effect of the Drill Bit/Formation Contact
Author: Clara Mata
Published in: Journal of Petroleum Science & Engineering, Vol. 189, 106966, 2020
Summary: Assesses microsphere durability during drilling, optimizing materials to improve performance in aggressive subsurface environments.

Title: Carbon Nanotubes Reinforced Lightweight Cement Testing Under Triaxial Loading Conditions
Author: Clara Mata
Published in: Journal of Petroleum Science and Technology, Vol. 174, pp. 663–675, 2019
Summary: Explores how carbon nanotubes enhance lightweight cement strength, promoting safer operations in downhole high-stress environments.

Title: Drilling Fluid Density and Hydraulic Drag Reduction with Glass Bubble Additive
Author: Clara Mata
Published in: Journal of Energy Resources Technology, ASME, Vol. 139(4), 042904, 2017
Summary: Demonstrates how glass bubbles reduce fluid density and drag, improving energy efficiency in oil and gas drilling processes.

🏆 Conclusion

Clara Mata’s career exemplifies the highest standards of applied engineering research, translating scientific rigor into real-world solutions that advance energy technologies and industrial innovation. Her ability to span multiple disciplines, from cryogenics to drilling fluids, and her consistent output of impactful patents and publications underscore her unique contributions to science and industry. Through leadership, deep technical knowledge, and a commitment to collaboration, Clara has earned her place as a frontrunner for the Best Academic Researcher Award. Her work not only addresses present-day challenges but also lays a foundation for future advancements in sustainable and efficient energy systems.

Yunxiao Li | Water Carbon Cycling | Best Researcher Award

Dr. Yunxiao Li | Water Carbon Cycling | Best Researcher Award

Associate Professor, Shanxi Agricultural University, China

Yunxiao Li is an esteemed Associate Professor at Shanxi Agricultural University, with a specialization in environmental science and a focus on river carbon cycling. With a Ph.D. in environmental science from Ocean University of China, he has dedicated his research to understanding the intricate dynamics of water carbonate systems. His work spans critical regions in China, including Jiaozhou Bay, Yellow River, and Fenhe River. Dr. Li’s contributions to environmental science have been instrumental in uncovering the impacts of ecological restoration and human activities on carbon cycles in coastal and river systems. His interdisciplinary approach has earned him recognition both within China and globally, making him a prominent figure in the field.

Profile

Scopus

 Education🎓

Dr. Yunxiao Li obtained his Doctorate in Environmental Science from Ocean University of China in 2018. During his academic journey, he laid the groundwork for his expertise in coastal and riverine biogeochemistry. His research throughout his doctoral studies focused on understanding carbon dynamics in aquatic ecosystems, particularly in areas impacted by urbanization and ecological changes. This strong educational foundation has propelled him toward groundbreaking research in carbon cycling processes, ecological restoration, and environmental sustainability.

Experience 💼 

Dr. Li has garnered extensive experience in both academic research and applied environmental science. As an Associate Professor at Shanxi Agricultural University, he has contributed significantly to the advancement of knowledge in environmental science. His leadership in research projects, such as water pollution source analysis and ecological restoration in the Fenhe River, showcases his ability to combine academic rigor with practical solutions. Furthermore, Dr. Li has served as a Topic Editor for reputable journals such as Frontiers in Marine Science and Sustainability, where his expertise guides the discussion on critical environmental issues. His involvement in numerous high-impact research projects has cemented his role as a leader in environmental science.

Research Interests🔬

Dr. Yunxiao Li’s research primarily revolves around coastal biogeochemistry and river carbon cycling. His work explores how ecological restoration and anthropogenic factors, such as wastewater discharge, influence carbon dynamics in aquatic environments. By studying the Yellow River, Fenhe River, and Jiaozhou Bay, Dr. Li has gained valuable insights into the control mechanisms of CO₂ fluxes in semi-arid regions. He is also dedicated to understanding how carbon cycles in coastal systems can be altered by both natural processes and human intervention, ultimately aiming to enhance environmental sustainability.

Publications Top Note📚

Wang, G., Yao, X., Zhang, Z., Li, Y., & Fan, W. (2024). “Effect of jujube orchard abandonment time on soil properties and enzyme activities at soil profile in the Loess Plateau.” Scientific Reports.

Li, Y., Dang, J., Huang, X., Bai, J., & Chen, X. (2024). “The response of carbonate system to watershed urbanization process in a semi-arid river.” Journal of Ocean University of China.

Conclusion🌍

Dr. Yunxiao Li’s academic journey and extensive research on river and coastal carbon cycles have positioned him as a leading expert in the field of environmental science. His work in areas like the Jiaozhou Bay and Fenhe River is integral to understanding the effects of human activity on carbon dynamics in aquatic ecosystems. As he continues to innovate in the areas of ecological restoration and environmental sustainability, Dr. Li remains committed to driving meaningful change in the management and preservation of water resources. His leadership in both research and academia ensures that his contributions will have a lasting impact on the field.