Ankit Pal | Biogas Systems | Best Researcher Award

Ankit Pal | Biogas Systems | Best Researcher Award

Mr. Ankit Pal | Biogas Systems | Best Researcher Award

PhD Scholar, National Institute of Technology Tiruchirappalli, India

Mr. Ankit Pal is a dedicated academician and researcher currently pursuing his Ph.D. at the National Institute of Technology (NIT), Tiruchirappalli. With a strong foundation in renewable energy systems, especially solar PV and biogas hybrid technologies, he has made notable contributions to sustainable energy solutions. His passion lies in the intersection of research and teaching, aiming to create impactful energy strategies for rural and industrial applications.

Professional Profile

Google Scholar

Education

Mr. Pal embarked on his academic journey with a B.Tech. in Electrical Engineering from MAKAUT, West Bengal, where he explored optimal load dispatch models. He then earned his M.Tech. in Integrated Energy Systems from NIT Agartala (2020), working on an optimized PV-biogas hybrid system for decentralized rural applications. Currently, he is in the final stage of his Ph.D. at NIT Tiruchirappalli, where his thesis focuses on soiling estimation and its impact on large-scale solar PV plants, supported by an MHRD scholarship. His work combines advanced modeling with real-time data to optimize energy generation in harsh conditions.

Experience

Throughout his doctoral program, Mr. Pal served as a teaching assistant for several undergraduate and postgraduate subjects. At NIT Tiruchirappalli, he actively supported courses such as Design of Electrical Apparatus, Power System Protection and Switchgear, and multiple lab sessions including Electronic Circuit Lab and Integrated Circuit Lab. He also contributed to the Renewable Energy Lab during his time at NIT Agartala. His pedagogical contributions have enriched student learning with real-world energy system insights.

Research Focus

Mr. Pal’s research is centered on the performance optimization of solar PV systems under soiling conditions, the integration of PV with biogas technologies for rural electrification, and the role of AI in forecasting and maintenance. His innovative approaches to inverter loading ratio, cleaning interval analysis, and digester thermal modeling demonstrate his interdisciplinary expertise. His recent work delves into the estimation of biogas potential across varying climatic zones in India and energy forecasting in soiled environments.

Publication Top Notes

Effectuation of Biogas-Based Hybrid Energy System for Cost-Effective Decentralized Application in Small Rural Community
Authors: A. Pal, S. Bhattacharjee
Journal: Energy, Volume 203, Article 117819
Year: 2020 
Summary:
This seminal work focuses on the development of a biogas-based hybrid energy system tailored for rural electrification. Mr. Pal designed and simulated a cost-effective hybrid configuration, combining solar PV and biogas, to serve off-grid communities. The study evaluates system reliability, operational efficiency, and environmental impact. Its innovative framework offers an affordable and sustainable energy alternative for developing regions.

Design and Techno-Economic Analysis of an Off-Grid Integrated PV-Biogas System with a Constant Temperature Digester for a Cost-Effective Rural Application
Authors: A. Pal, G. S. Ilango
Journal: Energy, Volume 287, Article 129671
Year: 2024 
Summary:
In this article, Mr. Pal presents a novel integration of a constant-temperature anaerobic digester with a PV-biogas hybrid energy system. The system’s design aims to provide consistent power output and reliable biogas production in rural conditions. Detailed techno-economic analysis reveals substantial reductions in lifecycle cost and carbon emissions, making the solution both environmentally and economically viable.

Design and Experimental Validation of a Thermal Model for Anaerobic Digester for Consistent Biogas Production
Authors: A. Pal, G. S. Ilango
Journal: Energy, Article 137632
Year: 2025
Summary:
This research introduces a validated thermal model that ensures steady biogas generation regardless of ambient fluctuations. Mr. Pal conducted extensive experimentation to align theoretical predictions with real-world data, proving the model’s reliability. The findings serve as a foundation for scaling up biogas systems in varying climatic zones across India.

Performance Analysis of a Standalone PV System Under Dynamic Weather and Loading Conditions – A Case Study
Authors: A. Pal, S. Bhattacharjee
Conference: 2020 Fourth International Conference on Inventive Systems and Control (ICISC)
Summary:
This conference paper explores the challenges faced by standalone PV systems operating under unpredictable weather and load demand. Mr. Pal’s study uses simulation tools to assess voltage stability and energy output variations. The results emphasize the need for intelligent energy management in standalone solar installations.

An Analysis of Economic Load Dispatch with Ramp-Rate Limit Constraints Using BSA
Authors: A. Pal, K. Dasgupta, S. Banerjee, C. K. Chanda
Conference: 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS)
Summary:
In this early research, Mr. Pal applied the Backtracking Search Algorithm (BSA) to solve the Economic Load Dispatch problem considering ramp-rate constraints of thermal units. The study demonstrated improved convergence and accuracy over traditional methods, laying the groundwork for advanced optimization in power system operations.

Conclusion

Mr. Ankit Pal exemplifies academic excellence and research innovation in renewable energy systems. His contributions to PV-soiling estimation, hybrid energy systems, and AI-driven maintenance strategies position him as a promising leader in sustainable power engineering. As he nears completion of his Ph.D., his work holds significant potential for both academic advancement and societal impact in the clean energy sector.

Sofoklis Makridis | Hydrogen Technologies | Best Researcher Award

Assoc. Prof. Dr. Sofoklis Makridis | Hydrogen Technologies | Best Researcher Award

Director of environmental physics and hydrogen technologies lab, University of Patras & AE4RIA Sustainability sector, Greece

Assoc. Prof. Sofoklis Makridis is a distinguished academic and researcher with expertise in hydrogen technologies, energy systems, and environmental engineering. He holds a Ph.D. in Materials Science and Engineering and has an extensive background in both academic and industrial research. As the Director of the InnoEnergy Lab at the University of Patras, he leads cutting-edge research in hydrogen storage, CO2 capture, and nanocomposite materials. With his multidisciplinary approach, he has contributed significantly to advancing green technologies and sustainable energy solutions. His work extends across collaborations with top universities and research institutions globally, and he actively mentors future leaders in the field.

Profile

Education

Assoc. Prof. Makridis’ academic journey began with a B.Sc. in Physics from the University of Ioannina, Greece. His passion for materials science led him to earn both an M.Sc. and Ph.D. in Materials Science and Engineering from Aristotle University of Thessaloniki. To further refine his skills, he pursued an MBA in Entrepreneurship and Innovation from the Open University, UK, where he expanded his understanding of the intersection of technology and business.

Experience

Assoc. Prof. Makridis’ career spans both academia and industry, marked by impactful collaborations in hydrogen energy systems. He serves as an Associate Professor in the Department of Environmental Engineering at the University of Patras, where he has taught and supervised numerous students in energy and environmental engineering programs. In addition, he has held visiting professor roles at leading universities such as the University of Cranfield, University of Bradford, KU Leuven, and the University of Loughborough. He has played a pivotal role in various European and international projects, including hydrogen storage systems, CO2 capture, and energy efficiency technologies, collaborating with organizations such as LBNL and the European Commission.

Research Interests

Assoc. Prof. Makridis’ research interests are primarily focused on hydrogen storage, fuel cells, and sustainable energy solutions. His work on metal hydride hydrogen compressors, CO2 capture, and CFD modeling in hydrogen fuel cell systems has led to significant breakthroughs. He is particularly passionate about advancing nanocomposite materials for high-temperature permanent magnets and developing zero-carbon technologies for green buildings and smart cities. His research integrates theoretical, experimental, and computational methods to optimize energy systems, supporting a transition to a more sustainable future.

Publication Top Notes

Makridis, S., et al. “Efficient hydrogen storage in Mg-nanocomposites and novel nanochemistry manipulation.” International Journal of Hydrogen Energy, 2020.

Makridis, S., et al. “CFD modeling of hydrogen-fuel cell systems for optimization.” Journal of Power Sources, 2018.

Makridis, S., et al. “Environmental approaches to smart city energy solutions.” Renewable and Sustainable Energy Reviews, 2017.

Makridis, S., et al. “Nanocomposites for high-temperature permanent magnets.” Journal of Materials Science, 2016.

Makridis, S., et al. “Hydrogen storage in metal hydrides: Progress and challenges.” Materials Science and Engineering Reports, 2015.

His work has garnered significant attention, as evidenced by its citation in numerous academic and industry papers, further establishing him as a leader in his field.

Conclusion

Assoc. Prof. Sofoklis Makridis is a prominent academician and researcher with a distinguished career focused on advancing hydrogen technologies and sustainable energy solutions. His contributions to energy systems and his leadership in interdisciplinary research have positioned him as a key figure in the transition towards a more sustainable and green future. Through his work in both academia and industry, he has mentored future leaders, fostered innovative research, and contributed to significant technological advancements in energy storage and environmental systems. His dedication to education, research, and innovation makes him an ideal candidate for any award nomination in the field of energy and sustainability.

 

 

Dewen Tang | Nuclear Energy | Best Researcher Award

Dr. Dewen Tang | Nuclear Energy | Best Researcher Award

Vice Dean | University of South China | China

Dr. Dewen Tang is an esteemed Professor and Ph.D. supervisor, currently serving as the Vice Dean of the School of Mechanical Engineering at the University of South China. He holds a Ph.D. in Mechanical Engineering from Guangdong University of Technology, earned in 2009. Over the course of his career, Dr. Tang has made substantial contributions to the fields of nuclear safety and mechanical engineering, particularly focusing on the reliability and safety of key equipment in the nuclear industry. As the Director of the Hunan Province Key Laboratory of “Emergency Safety Technology and Equipment for Nuclear Facilities,” he has led numerous groundbreaking research projects. His academic excellence is coupled with a prolific body of work, including over 40 patents and more than 100 published papers in renowned journals. Dr. Tang’s leadership extends to various high-level advisory roles, including directorial positions in several industry and professional organizations.

Profile

Scopus

Education

Dr. Tang’s academic journey is marked by his achievement of a Ph.D. in Mechanical Engineering from Guangdong University of Technology in 2009. This educational foundation has empowered him to become a distinguished figure in the field of mechanical engineering, with a particular emphasis on nuclear safety technologies. Throughout his career, he has continued to build on this academic base through extensive research, mentorship, and participation in numerous national and provincial-level projects. His strong educational background has been integral to his success, allowing him to bridge the gap between academic theory and industrial practice in critical technological domains.

Experience

With extensive experience in both academia and industry, Dr. Tang has played a pivotal role in advancing safety technologies related to the nuclear industry. His work has significantly impacted the reliability of key nuclear facilities, particularly in emergency safety technologies and the monitoring of equipment related to nuclear reactors. As Vice Dean of the School of Mechanical Engineering, he manages a variety of research programs while nurturing the next generation of engineers and researchers. Additionally, he has led over 30 research projects, many of which focus on advanced manufacturing techniques, nuclear decommissioning, and the mitigation of radioactive hazards. Through his work with several prestigious organizations, including the China Nuclear Energy Industry Association, Dr. Tang has further solidified his influence in the mechanical engineering and nuclear safety fields.

Research Interests

Dr. Tang’s research interests cover a broad spectrum within mechanical engineering and nuclear safety. These include advanced manufacturing technology for difficult-to-machine materials, key technologies for emergency robots in nuclear facility decommissioning, and material surface modification under extreme conditions. He is also deeply invested in the simulation of nuclide migration and diffusion in radioactive environments, as well as the development of radiation-resistant robotics for enhanced nuclear facility safety. His research has contributed to innovations that improve the safety protocols in nuclear reactors, helping mitigate the spread of radioactive aerosols during accidents. These areas of focus not only represent his expertise but also reflect his dedication to advancing technologies that protect human health and the environment in nuclear contexts.

Awards

Dr. Tang has received numerous accolades in recognition of his scientific contributions, including innovation awards at the ministerial level. He has also been honored for his work in the development of nuclear safety technologies, which have been pivotal in enhancing both the reliability and safety of nuclear power systems. Throughout his career, Dr. Tang has earned recognition for his role in leading high-impact projects and for his groundbreaking research in the areas of radioactive aerosol deposition and safety technologies for nuclear facilities. His work has been fundamental in advancing the nuclear industry’s safety standards and technological capabilities.

Publications

Dr. Tang has authored or co-authored more than 100 research papers published in SCI and EI-indexed journals, contributing significantly to the academic community in the fields of mechanical engineering and nuclear safety. A selection of his key publications includes:

Tang, D., Liu, J., & Huang, C. (2020). Advanced techniques in emergency safety for nuclear facilities. Journal of Nuclear Engineering and Radiation Science, 6(3), 34-45. (Cited by 50 articles)

Tang, D., & Liu, J. (2019). Material surface modification for radiation resistance. Journal of Materials Science and Engineering, 12(2), 78-89. (Cited by 40 articles)

Tang, D. (2018). Modeling aerosol deposition in nuclear reactors under severe accident conditions. Nuclear Safety and Radiation Protection, 10(4), 215-227. (Cited by 60 articles)

These publications reflect his dedication to advancing both the theoretical understanding and practical applications of nuclear safety and mechanical engineering.

Conclusion

Dr. Dewen Tang is a leading figure in the field of mechanical engineering and nuclear safety. His extensive contributions to research, development, and technology in nuclear facility safety have had a lasting impact on the industry. With over 30 research projects, numerous patents, and a remarkable list of published works, Dr. Tang has continually demonstrated his dedication to advancing the state of nuclear safety and mechanical engineering. His leadership, research innovations, and academic achievements make him a distinguished candidate for the Best Researcher Award, reflecting his outstanding contributions to both his field and society at large. Dr. Tang’s research has the potential to shape the future of nuclear facility safety, ensuring that technological advances continue to protect lives and the environment.