Prof. Xueyan He | Environmental Science | Excellence in Research Award
The sixth hospital of wuhan | China
View ORCID Profile
Featured Publication
View ORCID Profile
Featured Publication
Senior Scientist | New Mexico State University | United States
1. Zhao, A., Yu, Q., Feng, L., Zhang, A., & Pei, T. (2020). Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau. Journal of Environmental Management, 261, 110214.
Cited by: 203
2. Acheampong, M., Yu, Q., Enomah, L. D., Anchang, J., & Eduful, M. (2018). Land use/cover change in Ghana’s oil city: Assessing the impact of neoliberal economic policies and implications for sustainable development goal number one–A remote sensing perspective. Land Use Policy, 73, 373–384.
Cited by: 125
3. Pu, R., Landry, S., & Yu, Q. (2018). Assessing the potential of multi-seasonal high resolution Pléiades satellite imagery for mapping urban tree species. International Journal of Applied Earth Observation and Geoinformation, 71, 144–158.
Cited by: 117
4. Yu, Q., Ji, W., Pu, R., Landry, S., Acheampong, M., O’Neil-Dunne, J., Ren, Z., et al. (2020). A preliminary exploration of the cooling effect of tree shade in urban landscapes. International Journal of Applied Earth Observation and Geoinformation, 92, 102161.
Cited by: 85
5 Sun, Z., Luo, J., Yang, J., Yu, Q., Zhang, L., Xue, K., & Lu, L. (2020). Nation-scale mapping of coastal aquaculture ponds with Sentinel-1 SAR data using Google Earth Engine. Remote Sensing, 12(18), 3086.
Cited by: 85
Dr. Qiuyan Yu’s research advances global understanding of vegetation dynamics, land-use change, and climate–ecosystem interactions. Her work provides critical insights for sustainable environmental management, guiding policies that balance ecological resilience with human development in a changing world.
Associate Professor | Purdue University | United States
Professor | Technical Institute of Physics and Chemistry | China
Research assistant at Hungarian University of Agriculture and Life Sciences | Hungary
Marianna Vályi Nagy is a research assistant at the Hungarian University of Agriculture and Life Sciences (MATE), Institute of Agronomy, whose academic journey and professional career have been devoted to advancing sustainable agricultural practices. With a strong foundation in horticultural engineering, plant protection, and agronomy, she has established herself as a dedicated researcher focusing on mixed cropping systems, crop interactions, and climate-resilient agricultural methods. Her work bridges fundamental agricultural sciences with applied research, producing impactful results that contribute both to academic knowledge and to real-world agricultural innovations.
Marianna began her academic journey at Corvinus University in Budapest, where she graduated as a Horticultural Engineer. Her interest in crop science and plant interactions motivated her to pursue further qualifications, and she later obtained a specialized degree in Plant Protection Engineering from the University of Szeged. Her commitment to higher learning led her to doctoral studies at the Hungarian University of Agriculture and Life Sciences, supported by the Young Researcher Training Program. Throughout her academic development, Marianna demonstrated a keen ability to integrate multiple disciplines within plant sciences, aligning her expertise with the pressing challenges of climate change, food security, and sustainable farming systems.
Marianna’s professional experience is rooted in her contributions to both research and applied agricultural innovation. She began her research career at the National Agricultural Research and Innovation Centre, where she gained valuable experience in experimental design and crop management practices. Later, she joined the Applied Agronomy Research Station, which became part of MATE, and contributed to experiments that combined scientific rigor with industry-driven needs. Over the years, she has participated in numerous commissioned research projects, collaborating with agricultural companies to test crop varieties, seeding strategies, and sustainable cultivation methods. This blend of academic and industry engagement has allowed her to create a research portfolio that is both scientifically robust and practically relevant.
Marianna’s primary research interests revolve around mixed cropping systems, with a particular emphasis on winter wheat–winter pea interactions. She explores the development process of companion crops, analyzing both their quantitative and qualitative characteristics. Her studies extend beyond traditional yield-focused research by considering plant development, interaction dynamics, seeding rates, and variety selection, providing a comprehensive understanding of crop coexistence. These investigations address one of the greatest challenges in modern agriculture: identifying cultivation methods that are environmentally sustainable, resilient to climate change, and adaptable to market fluctuations. Through her research, Marianna contributes to shaping agricultural practices that balance productivity with ecological responsibility.
Title: Yield and Quality Parameters of Winter Wheat in a Wheat–Pea Mixed Cropping System
Authors: Marianna Vályi-Nagy, István Kristó, Melinda Tar, Attila Rácz, Lajos Szentpéteri, Katalin Irmes, Csaba Gyuricza, Márta Ladányi
Summary: This study evaluated wheat–pea intercropping, showing improved grain yield, protein content, and crop resilience, highlighting ecological and economic advantages compared to monoculture wheat cultivation.
Title: Competition Indices and Economic Benefits of Winter Wheat and Winter Peas in Mixed Cropping
Authors: Marianna Vályi-Nagy, István Kristó, Melinda Tar, Attila Rácz, Lajos Szentpéteri, Katalin Irmes, Gergő Péter Kovács, Márta Ladányi
Summary: Research analyzed competition indices and profitability of wheat–pea mixtures, concluding intercropping enhances land-use efficiency and offers greater economic sustainability than sole cropping systems.
Title: The Effect of Foliar Zinc Application on the Leaf Chlorophyll Concentrations and Grain Yields of the Winter Wheat (Triticum aestivum L.) in the Field Experiments of Two Seasons
Authors: Katalin Irmes, István Kristó, Lajos Szentpéteri, Attila Rácz, Marianna Vályi-Nagy, Mária Katalin Kassai, Klára Veresné Valentinyi, Melinda Tar
Summary: Two-season field trials revealed foliar zinc application increased chlorophyll levels and grain yields in winter wheat, emphasizing zinc’s critical role in improving crop productivity.
Title: Effects of Winter Cereals (Triticum aestivum L., Hordeum vulgare L., Triticosecale Wittmack) and Winter Pea (Pisum sativum L.) Intercropping on Weed Cover in South-Eastern and Central Hungary
Authors: Attila Rácz, Marianna Vályi-Nagy, Melinda Tar, Katalin Irmes, Lajos Szentpéteri, Apolka Ujj, Klára Veresné Valentinyi, Márta Ladányi, István Kristó
Summary: Field experiments demonstrated cereal–pea intercropping significantly reduced weed cover, promoting ecological weed management and enhancing sustainability in Hungarian winter cropping systems.
Marianna Vályi Nagy stands out as a promising researcher whose dedication to sustainable agriculture is evident in her academic achievements, applied research, and innovative contributions. Her expertise in mixed cropping systems addresses one of the most urgent agricultural challenges of our time—developing cultivation methods that align with ecological principles while ensuring productivity and resilience. With a growing body of publications, patents, and industry collaborations, she exemplifies the qualities of a forward-thinking researcher who bridges science and practice. Her membership in professional associations and recognition through national research programs further reinforce her position as an emerging leader in agricultural sciences. Marianna’s work holds significant potential to guide future research directions and agricultural policies, making her a strong candidate for the Best Researcher Award.
Assist. Prof. Dr. Nashwa Yousif, Egyptian Atomic Energy Authority, Egypt
Dr. Nashwa Mohamed Mahmoud Yousif is an Assistant Professor of Material Sciences at the Egyptian Atomic Energy Authority, specializing in energy storage and renewable energy research. With over 18 years of academic and research experience, she has contributed extensively to advanced electrochemical analysis, nanomaterials development, and polymer/metal oxide composites for sustainable energy applications. Currently based at the Electrochemical Lab of the Solid State and Accelerators Department at the National Center for Radiation Research & Technology (NCRRT), her contributions span academic supervision, collaborative research, and high-impact journal publications.
Dr. Yousif’s academic journey is rooted in physics and material science. She steadily progressed through academic ranks, beginning as a physics researcher in 2007. Her advanced studies led her to specialize in solid-state physics and energy materials, which has underpinned her extensive work on electrochemical energy storage systems and nanocomposites.
Dr. Yousif has steadily grown her academic career within the Egyptian Atomic Energy Authority. She began as a physics researcher (2007–2012), before being promoted to assistant lecturer (2012–2016), and lecturer (2016–2022). In 2022, she assumed the role of Assistant Professor in Material Sciences at the NCRRT. Throughout this time, she has been deeply involved in both laboratory research and the mentorship of graduate students, significantly influencing Egypt’s scientific landscape in the fields of renewable energy and electrochemical materials.
Her core research interests include the development of cathode materials for multivalent ion batteries, synthesis of polymer/metal oxide nanocomposites, and conversion of plastic waste into carbon nanomaterials for energy storage. She focuses on scalable, eco-friendly approaches to sustainable energy solutions, particularly in enhancing battery technology and supercapacitor performance.
📅 Published: May 2025
📘 Journal: Journal of Electronic Materials
👥 Contributors: Soraya Abdelhaleem, M. S. Shalaby, H. M. Hashem, Nashwa M. Yousif
Summary:
This research explores the synthesis of Nd₁−ₓCaₓMnO₃ perovskite-type nanocomposites using a facile route and their application as electrode materials in supercapacitors. The study reveals how calcium doping impacts the crystal structure and electrochemical behavior, resulting in enhanced specific capacitance and charge-discharge performance. The nanocomposites exhibit excellent electrochemical stability, making them promising candidates for next-generation energy storage devices.
📅 Published: May 2025
📘 Journal: ChemistrySelect
👥 Contributors: Ahmed E. Awadallah, Ateyya A. Aboul‐Enein, Nashwa M. Yousif, Mostafa A. Azab, Ahmed M. Haggar
Summary:
This environmentally focused study converts plastic waste into carbon nanotubes (CNTs) and further functionalizes them with Mo₂C, MoO₃, and a hybrid MoO₃/Mo₂C composite. The resulting materials exhibit exceptional electrochemical properties, including high conductivity and capacitance. The work provides a dual solution for plastic waste management and supercapacitor enhancement, highlighting the potential of green nanotechnology.
📅 Published: January 2025
📘 Journal: Physica B: Condensed Matter
👥 Contributors: Soraya Abdelhaleem, Manale Noun, Nashwa M. Yousif, Mustafa Saeed Shalaby
Summary:
This article examines how the inclusion of carbon nanotubes influences the superconducting behavior of indium-doped Bi-2212 ceramics. The findings indicate enhanced critical current density and a marked effect on the magnetic and ferromagnetic properties. The research provides insight into the interplay between nanostructures and superconducting materials, opening avenues for high-efficiency superconductors in electronics.
📅 Published: December 2024
📘 Journal: Russian Journal of Electrochemistry
👥 Contributors: Nashwa M. Yousif, Mohamed R. Balboul
Summary:
This study introduces a novel flexible electrode made from a composite of ethylene-vinyl acetate (EVA), polyaniline (PANI), and carbon nanotubes (CNTs). The material displays impressive capacitance retention and flexibility, ideal for wearable energy storage devices. It marks a significant advancement in flexible supercapacitor technology through a cost-effective and scalable approach.
📅 Published: February 10, 2023
📘 Journal: Journal of Applied Polymer Science
👥 Contributors: Mustafa Saeed Shalaby, Soraya Abdelhaleem, Eman O. Taha, Nashwa M. Yousif
Summary:
The paper investigates the impact of γ-irradiation on polyaniline/Bi₂Te₃ composites, assessing their structural stability and electrical response. The results demonstrate that controlled irradiation improves the thermistor behavior of the composite, making it suitable for temperature-sensing applications in radiation-exposed environments. This work contributes to the design of robust, radiation-resistant sensors.
Dr. Nashwa M. Yousif exemplifies the modern researcher’s commitment to both innovation and sustainability. Her work bridges academic research and practical solutions, tackling some of the world’s most urgent energy challenges. Through her publications, graduate supervision, and national projects, she continues to lead with scientific integrity and a forward-looking vision. Her contributions make her a strong contender for recognition in national and international award platforms, especially in categories honoring women in science and sustainability innovation.
Associate Professor, Shanxi Agricultural University, China